CASE REPORT

Eben L. Rosenthal, MD, Section Editor

THREE-DIMENSIONAL PHOTOGRAMMETRY FOR SURGICAL PLANNING OF TISSUE EXPANSION IN HEMIFACIAL MICROsomia

Yasas S. N. Jayaratne, BDS, John Lo, BDS, MDS, MOSRCS (Edin), FCDSHK (OMS), FHKAM (DS), Roger A. Zwahlen, MD (Berne), DMD (Zurich), FEBOMFS (UEMS), Lim K. Cheung, FFDRCs (Ireland), FDSRcps (Glasgow), FRACDS (OMS), Hon FDSRCS (Edin), PhD

Aquila

Discipline of Oral & Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administration Region. E-mail: lkcheung@hku.hk

Accepted 28 July 2009

Published online 00 Month 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/hed.21258

Abstract: Background. We aim to illustrate the applications of 3-D photogrammetry for surgical planning and longitudinal assessment of the volumetric changes in hemifacial microsomia.

Methods. A 3-D photogrammetric system was employed for planning soft tissue expansion and transplantation of a vascularized scapular flap for a patient with hemifacial microsomia. The facial deficiency was calculated by superimposing a mirror of the normal side on the preoperative image. Postsurgical volumetric changes were monitored by serial superimposition of 3-D images.

Results. A total of 31 cm³ of tissue expansion was achieved within a period of 4 weeks. A scapular free flap measuring 8 cm × 5 cm was transplanted to augment the facial deficiency. Postsurgical shrinkage of the flap was observed mainly in the first 3 months and it was minimal thereafter.

Conclusion. A 3-D photogrammetry can be used as a non-invasive objective tool for assessing facial deformity, planning, and postoperative follow-up of surgical correction of facial asymmetry. © 2009 Wiley Periodicals, Inc. Head Neck 00: 000–000, 2009

Keywords: imaging; three-dimensional; photogrammetry; hemifacial microsomia; tissue expansion; surgery; computer-assisted

Hemifacial microsomia (HFM) is characterized by facial asymmetry resulting from unilateral congenital deficiency of both hard and soft tissues. It mainly affects the structures derived from the first and second branchial arches. HFM is considered to be the second most common craniofacial anomaly after cleft lip and palate.1

Surgical management of HFM should address the correction of both the hard and soft tissue components of the deformity. Distraction osteogenesis or orthognathic surgery can be employed for correction of the osseous anomalies depending on the age of the patient and the severity of the deformity. Soft tissue correction is usually performed after skeletal stability has
been achieved. Fat injections have been tried but significant posttreatment atrophy has been reported, possibly due to the insufficient skin expansion. Although free vascularized flaps are currently preferred for soft tissue augmentation of the transverse deformity, skin color mismatch between the donor site and the recipient site still poses a potential aesthetic problem. The use of soft tissue expansion (STE) at the donor site prior to harvesting free flaps are well described in the scientific literature. However, there were no publications on STE of the recipient site prior to transplantation of free flaps in the cranio-maxillofacial region. Such expansion can be a useful adjunct to transplantation of free flaps in the crano-maxillofacial region. Such expansion can be a useful adjunct to transplantation of free flaps, as the expanded skin of the recipient site provides a superior match of both color and texture when compared with composite free flaps and their skin components from the donor site. Furthermore, STE allows the transfer of sufficient bulk of tissue to the recipient site as a pocket is created beforehand. It also permits tensionless skin closure.

The main challenge when planning surgery for HFM is volume restoration. This is further complicated by the complex three-dimensional (3-D) nature of the maxillofacial skeleton coupled with the aesthetic and functional considerations. Therefore, objective information on the extent and magnitude of tissue deficiency is required when planning treatment for HFM patients. Furthermore, progressive volumetric changes during different stages of treatment need to be monitored to evaluate the soft tissue response to STE and transplantation of the free flap.

Photogrammetry is the process of obtaining measurements from photographs and stereophotogrammetry refers to the use of 2 or more cameras for acquiring 3-D information. The novel stereophotogrammetry systems provide a quick and a noninvasive method for acquiring 3-D data on facial surface characteristics and aid surgeons when planning surgery in challenging cases.

The 3dMD face (3dMD, Atlanta, GA) is a stereophotogrammetric system capable of 180-degree face captures (ear-to-ear) in less than 2 milliseconds. The procedure of image acquisition is neither demanding for the patient or the operator. It provides images of superior quality and facilitates calculation of anthropometric measurements, proportions, and volume changes.
This system has been validated in terms of its accuracy and reliability.9,10

The aim of this report is to illustrate the applications of 3-D photogrammetry for surgical planning, monitoring treatment response, and longitudinal assessment of the volumetric changes in HFM.

CASE REPORT

A 19-year-old woman with a known history of HFM (Pruzansky type IIa) presented with left facial deficiency, maxillary canting, and mandibular asymmetry. Distraction osteogenesis had been performed during her childhood but the condition relapsed following growth.

A 3-staged surgical treatment comprising of: (1) bimaxillary osteotomies and implantation of a tissue expander, (2) soft tissue expansion, and (3) removal of the tissue expander plus transplantation of a vascularized scapular flap, was planned (Figure 1). Informed written consent was obtained from the patient.

Once the tissue expander (Mentor, Minneapolis, MN) was implanted during the initial surgery, saline was injected into the device on 3 consecutive occasions over a period of 4 weeks. Thereafter, a second surgery was performed to remove the expander and transplant the de-epithelialized osteocutaneous scapular flap (Figure 2). Capsulectomy was not performed and the transplanted flap was secured with multiple subcutaneous 3/0 vicryl sutures, especially on the superior part of the developed pocket. A 3-D photogrammetry system was employed during treatment planning and postoperative follow-up.

METHODS

Image Acquisition. The patient’s 3-D photographs were acquired with the “3dMD face” system while the patient was seated in a chair located at a set distance from the cameras.

Estimation of Facial Tissue Deficiency. A mirror image was created based on the unaffected side of the patient’s preoperative 3-D photograph (Figure 3). The resulting mirror image was then superimposed on the original preoperative image.

The two 3-D photographs were manually approximated initially, overlaying them on top of each other. The right side of the face was

FIGURE 3. The process of creating the mirror image. (A) Preoperative image of the patient. (B) The new mirror image created based on the preoperative image of the right face. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

This system has been validated in terms of its accuracy and reliability.9,10

The aim of this report is to illustrate the applications of 3-D photogrammetry for surgical planning, monitoring treatment response, and longitudinal assessment of the volumetric changes in HFM.

CASE REPORT

A 19-year-old woman with a known history of HFM (Pruzansky type IIa) presented with left facial deficiency, maxillary canting, and mandibular asymmetry. Distraction osteogenesis had been performed during her childhood but the condition relapsed following growth.

A 3-staged surgical treatment comprising of: (1) bimaxillary osteotomies and implantation of a tissue expander, (2) soft tissue expansion, and (3) removal of the tissue expander plus transplantation of a vascularized scapular flap, was planned (Figure 1). Informed written consent was obtained from the patient.

Once the tissue expander (Mentor, Minneapolis, MN) was implanted during the initial surgery, saline was injected into the device on 3 consecutive occasions over a period of 4 weeks. Thereafter, a second surgery was performed to remove the expander and transplant the de-epithelialized osteocutaneous scapular flap (Figure 2). Capsulectomy was not performed and the transplanted flap was secured with multiple subcutaneous 3/0 vicryl sutures, especially on the superior part of the developed pocket. A 3-D photogrammetry system was employed during treatment planning and postoperative follow-up.

METHODS

Image Acquisition. The patient’s 3-D photographs were acquired with the “3dMD face” system while the patient was seated in a chair located at a set distance from the cameras.

Estimation of Facial Tissue Deficiency. A mirror image was created based on the unaffected side of the patient’s preoperative 3-D photograph (Figure 3). The resulting mirror image was then superimposed on the original preoperative image.

The two 3-D photographs were manually approximated initially, overlaying them on top of each other. The right side of the face was

FIGURE 3. The process of creating the mirror image. (A) Preoperative image of the patient. (B) The new mirror image created based on the preoperative image of the right face. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

FIGURE 4. A color-millimetric map comparing the preoperative and mirrored images. The preoperative image has been used as the reference surface. The red end of the scale shows regions that are in front of the reference surface (ie, the most positive distances) and the green, the most negative. The black color indicates regions that do not fall within selected distance range (ie, $+10$ mm to -10 mm). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
used as a reference for the registration of images. Thereafter, the registration software was invoked and the aligning process occurred automatically. For each registration, a root mean square (RMS) \(\text{error} \) below 0.5 mm was considered satisfactory.

The accuracy of superimposition was assessed with color-millimetric maps (Figure 4). These maps indicate the distance between the 2 superimposed surfaces. The green color indicates more negative values and the red color represents more positive values compared to the reference surface. The maximum and minimum distances for this color-coding scale were set at \(+10 \text{ mm} \) and \(-10 \text{ mm} \), respectively. The facial region most deficient of tissue was delineated using this color-millimetric map and its dimensions were measured.

A template created from the preoperative image was used to crop out an area with a constant margin from the superimposed images. This template encompassed an area extending from the left infraorbital region to the lower border of the mandible (Figure 5). The volume differences between cropped out areas were calculated.

Estimation of Volumetric Changes. Volumetric changes during STE and subsequent to scapular flap transplantation were monitored by serial superimposition of 3-D images taken after each treatment session. The images were registered using the forehead as a reference. Volumetric changes were calculated using the same template and method described previously (Figure 5). All measurements were performed twice by the same investigator, with a minimum of 48 hours elapsing between measurement sessions. Paired sample \(t \) test was performed to
determine differences between values obtained at the 2 measurement sessions.

A prospective evaluation of the facial changes subsequent to scapular flap transplantation was conducted with 3-D photogrammetry at 1, 3, 6, and 12 months postoperatively (Figure 6 and Figure 7).

RESULTS

There was no significant difference between the values calculated during the 2 separate measurement sessions ($p = .229$). Therefore, the mean of 2 measurements were used for subsequent calculations.

The Amount of Tissue Expansion Required. By comparing the preoperative image and the mirror image, the volume of tissue required to restore facial symmetry was estimated to be 16.41 cm3. Overexpansion was performed because once the implant has been removed, stress relaxation shortens the predicted volume gain. At the moment, there are no clear guidelines on the amount of overexpansion required to overcome this volume loss. Therefore, we

Table 1. Volumetric changes at different time intervals.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Time interval</th>
<th>Volume difference (cm3)*</th>
<th>Volume change †</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue deficiency (assessed using the mirror image)</td>
<td>Preoperative</td>
<td>–16.41</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Following initial surgery</td>
<td>1 week</td>
<td>+20.23</td>
<td>23.28%</td>
</tr>
<tr>
<td></td>
<td>4 weeks</td>
<td>+30.84</td>
<td>87.93%</td>
</tr>
<tr>
<td>Following scapular flap transplantation</td>
<td>1 month</td>
<td>+27.08</td>
<td>65.02%</td>
</tr>
<tr>
<td></td>
<td>3 months</td>
<td>+23.81</td>
<td>45.09%</td>
</tr>
<tr>
<td></td>
<td>6 months</td>
<td>+22.38</td>
<td>36.38%</td>
</tr>
<tr>
<td></td>
<td>1 year</td>
<td>+21.43</td>
<td>30.59%</td>
</tr>
</tbody>
</table>

* The pre-operative image was used as the reference.
† Compared to the initial tissue deficiency.
attempted to expand approximately twice the amount of the required volume. A total of 30.84 cm³ of STE was achieved within a period of 4 T1 weeks (Table 1).

Surface Dimensions of the Flap to be Harvested. With the color-millimetric map, the dimensions of the deficient region were determined as 7 cm × 4 cm (Figure 4). A scapular flap measuring 8 cm × 5 cm was transplanted to augment the facial deficiency (Figure 3). An overcorrection was performed to compensate for the potential shrinkage of the flap following surgery.

The Volume Changes Subsequent to Scapular Flap Transplantation. The volume changes observed at different time intervals are depicted in Table 1. The postsurgical shrinkage observed at the recipient site after 3, 6, and 12 months compared to the first month were 12.1%, 17.4%, 20.9%, respectively. Shrinkage was primarily seen in the posterosuperior aspect of the recipient site as evident in the color-millimetric map comparing the 1-month and 12-month postoperative images (Figure 7).

DISCUSSION

Although radiographs and CTs provide excellent hard tissue images, the information that can be derived from them pertaining to the soft tissue counterparts and their surface anatomy is limited. Clinicians have to rely solely on their visual judgment when assessing surface changes of facial soft tissues. Such visual assessments are highly subjective and do not provide any quantitative information. Furthermore, some abnormalities may be invisible to the naked eye but may be of significant diagnostic value.13

A 3-D photogrammetry provides the clinician a powerful tool for objectively evaluating and quantifying the facial soft tissues. It is also convenient for the patients because the number of recall visits can be minimized, as the 3-D images can be stored digitally, retrieved, and examined when the need arises. The images can be manipulated and viewed in a variety of angles in order to extract the maximum diagnostic information. Apart from volume estimation, the system has a number of applications which can be valuable for the cranio-maxillofacial surgeons. These include diagnosis of craniofacial anomalies, orthognathic surgical planning, and simulation of soft tissue changes.14–18 Furthermore, the 3-D facial images could be fused with CT data to generate virtual craniofacial models.19

The mirror image provides a photo-realistic goal to the surgeons about the ideal outcomes. However, determination of the midline in the preoperative image may influence the quality of the resulting mirror image.20 There may be some inter-examiner variability in selecting the facial midline in patients with asymmetry. This shortcoming was minimized in the present study by developing several mirror images and selecting the most appropriate image with the consent of all parties involved.

The influence of surgical and nonsurgical factors should be considered when evaluating the dimensional changes of the transplanted flap. Capsulectomy was not performed for this patient as the interval between the first and the second surgery (4 weeks) was too short for a mature capsule to develop. The flap was secured by several subcutaneous sutures. Despite these measures, sagging of the flap under the influence of gravity was noted (Figure 7). The volume loss observed in the superolateral aspect may be partly due to this reason. The influence of the osseous component of the flap on volume changes also warrants some attention. It has been shown in previous studies that vascularized bone grafts undergo minimal resorption and are quite stable in the long-term.21–23 Hence, the contribution of the osseous component of the flap on volume changes could be minimal.

Baseline information on the extent and degree of tissue deficiency is important when planning treatment for HFM as they indicate the dimensions of change required. With the color-millimetric maps, it was possible to localize the area that was most deficient of tissues in our patient. Such quantitative information aids the selection of the most appropriate tissue expander (Figure 2) suitable for the individual patient, as several devices of different sizes are available on the market.

A variety of methods including complex mathematical formula,24–26 grid measurements,27 and distances between anatomic landmarks28 have been proposed for the quantification of STE. However, the majority of STE cases reported in the literature has been performed blindly without considering progressive volumetric changes.29–31 Ji et al32 has used
mohanasekars

3-D Photogrammetry for Surgical Planning

HEAD & NECK—DOI 10.1002/hed
Month 2009

A 3-D photogrammetry was utilized to estimate the dimensions of the surgical flap required from the donor site in our patient. Although the deformity was estimated to be 7 x 4 cm, an overcorrection was planned as non-innervated free flaps can undergo shrinkage with time. To compensate for such shrinkage, an 8 x 5 cm scapular flap was harvested. Only the surface dimensions of the flap were estimated. The thickness of the vascular flap cannot be controlled as it is largely determined by the fascial plane below the vascular pedicle and the subcutaneous fat layer above. Furthermore, reducing the flap thickness may compromise the perfusion and ultimately affect its survival.

Since there are no quantitative data in the scientific literature on the longitudinal dimensional changes of vascularized scapular flaps, the overcorrection was intentionally planned to compensate for eventual postsurgical shrinkage. It is evident from Table 1 that the flap has undergone considerable shrinkage throughout its postoperative course. At 12 months after the surgery, the overcorrection was only 5.02 cm³. Nevertheless, another and with direct anthropometry. J Craniofac Genet 2004;28:401–409.

CONCLUSION

A 3-D photogrammetry provides the surgeons with a noninvasive objective tool for planning surgery in HFM. It facilitates the identification of the extent and degree of tissue deficiency, selection of the tissue expander of appropriate dimensions, monitoring of volumetric changes during STE, and estimation of the tissue volume required from the donor site.

REFERENCES

AQ1: Please confirm that all author names are OK and are set with first name first, surname last.