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Abstract

Intuitively, if players can communicate, they should be able to reach
coordinated play in a coordination game. However, simply adding a com-
munication stage before the play of the game does not render coordination
as a unique prediction. To further refine the set of equilibria, Farrell sug-
gested that a self-committing cheap talk statement about one’s planned
behavior should be believed and thus would for sure lead to coordinated
play. Aumann, however, argued that the statement has to be both self-
committing and self-signaling for it to guarantee coordination. In this
paper, the concept of common knowledge of language is formally incorpo-
rated into the cheap talk extension game. This paper shows that, if the
stage game satisfies both the self-committing and the self-signaling con-
dition, then every iteratively admissible outcome in the language game
constitutes a coordinated play and gives the Sender her Stackelberg out-
come. On the other hand, this paper identifies a class of generic games
that violate self-signaling condition where every strategy profile of the
stage game is an iteratively admissible outcome of the language game.
This result supports Aumann’s argument that the self-signaling condition
is necessary for coordinated play to be guaranteed by one-sided commu-
nication.
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1 Introduction

This paper applies the idea of common knowledge of language to complete-
information games with one-sided communication. There is a debate in the
literature over what criterion for a cheap talk statement makes it credible. Far-
rell (1988) argues that a cheap talk statement about one’s planned behavior is
credible if it is self-committing, that is, if the speaker believes that the statement
will be believed, she will have the incentive to carry it out. A self-committing
statement should be believed because, if the speaker is sure that it will be be-
lieved, the speaker will indeed carry it out. Aumann (1990), on the other hand,
argues that self-committing criterion is not enough; a credible cheap talk state-
ment about one’s planned behavior has to be self-signalling as well, that is, the

speaker would want it to be believed only if she indeed plans to carry it out.
The difficulty in formalizing the credibility criterion lies in how to incor-

porate the strategy of the hypothetical speaker who intends to not carry out
her statement into the analysis . Baliga and Morris (2002) tackle this prob-
lem by expanding the original game into one in which the Sender has private
information. In this expanded game, each action that the Sender may take in
the original game is the dominant action of one Sender type. Given any claim
about planned behavior, every type of Sender whose dominant action is not
equal to this claimed action represents a hypothetical speaker who intends not

to carry out her claim. This transforms the question of when the Sender could
credibly transmit information about her intended action into the question of
when a fully-separating perfect Bayesian equilibrium exists, i.e. an equilibrium
where the informed player fully reveals her type. Since the common prior puts
positive weight on every Sender type, the strategy of every Sender type has to
be taken into consideration by the Receiver in a perfect Bayesian equilibrium.
Baliga and Morris (2002) show that the self-committing condition alone is not
sufficient for establishing a credible Sender claim by demonstrating that there
is no communication in a class of games which are self-committing but not self-
signaling. In this class of games, the Receiver has only two actions. The

self-signaling condition is violated in this class of games because the Sender’s
preference of the Receiver’s actions is independent of her own actions.
We notice that every Sender action in the original stage game that is not

strictly dominated is associated with a belief about the Receiver’s actions, and
that every rationalizable Sender action is a best response to a possibly mixed
Receiver action. In addition, if the Receiver puts positive weight on every
belief that the Sender holds, the Receiver has to take into account the strategy
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of every hypothetical Sender with different intentions. Iterative admissibility
is a solution concept with this property.
In this expanded game, an instruction is actually a recommendation for the

Receiver to take an action in a specified subset. Thus, an opposite instruction
is then a recommendation of actions in the complement of that subset. An

instruction is more precise if the recommended subset of Receiver actions is
smaller. We assume that the language is rich enough to contain every possible
sequence of instructions with increasing precision. Two such sequences may
share the first several instructions. So, we can think of the common instructions
as the common ancestor of the original sequences. Roughly speaking, if the
common ancestor of a pair of such messages contains the common ancestor of
another pair as a subsequence, we say that the former pair is more similar to
each other than the latter pair. With this relationship, we apply two conditions
that define the set of strategies consistent with language: (1) literal meaning

condition, i.e.: if the Receiver reacts to a message with a specific action, then he
reacts with the same action to the related messages that literally recommends
that specific action; (2) convexity condition, i.e.: if the Receiver takes the same
action after receiving two different messages, then he takes that same action
after any message that may have been delivered with some component of the
original message. Our language assumption combined with weak dominance
enables messages to convey some information about the Sender’s preference
regarding the actions of the Receiver.
We focus on stage games where the best response correspondences are func-

tions. The stage game is self-signaling when the Sender always prefers the

Receiver to take his best response, and the stage game is self-committing if
the Receiver should take an action whenever one is recommended, given that
the Sender believes that the recommendation will be followed. With these
definitions in mind, we find that if the stage game is self-committing and self-
signalling, there is a unique iterative admissible outcome of the language game
which gives the Sender her Stackelberg payoff. On the other hand, if the stage
game is self-committing, but the Sender’s preference over the Receiver’s ac-
tions does not depend her own action, every rationalizable action profile is the
outcome of an iterative admissible strategy profile in the language game.
The rest of this paper is structured as follows. Section 2 provides three

simple examples to illustrate the role of the self-signalling condition and to
motivate the language assumption. Section 3 describes the model and the
language assumptions. Section 4 presents our main results described above.
Section 4.3 briefly reviews the main results in Baliga and Morris (2002) and
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Receiver’s actions
Opera Club

Sender’s actions Opera 2,1 0,0
Club 0,0 1,2

Table 1: Battle of Sex Game

“opera” “club”
Always Opera Opera Opera
Always Club Club Club
Literal Opera Club
Perverse Club Opera

Table 2: Receiver’s Strategies in Battle-of-the-Sex Game

compares theirs with ours. Section 5 concludes.

2 Motivating Examples

The main idea of this paper is best understood through examples. The battle-

of-the-sex game example in section 2.1 illustrates that self-signalling is sufficient
to guarantee Stackleberg payoff for the speaker. The investment game exam-
ple in section 2.2 shows that a severe violation of the self-signalling criterion
makes communication ineffective. The partial-common-interest game in sec-
tion 2.3 motivates the hierarchical messages and language assumptions formally
described in section 3.2.

2.1 Coordination without positive spillovers

In the Battle-of-the-Sexes game in table 2.1, there are two Nash equilibria:
both go to the Opera and both go to the Club. The Sender prefers the first
equilibrium and the Receiver prefers the second. The promise “I will go to the
opera” is self-committing because if the Sender believes that the Receiver will

believe this statement and play his best response Opera, the Sender would prefer
to go to the Opera and carry out her promise. The promise is self-signalling
as well because had the Sender not intended to go to the Opera, i.e. had she
intended to go to the Club, she would prefer the Receiver to go to the Club
instead of the Opera and hence she would not want the Receiver to believe the
promise “I will go to the Opera”.
SupposeM = {“opera”, “club”}. It can be interpreted as a promise to carry

out a certain action, or a recommended action for the Receiver. The Sender
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sends a message m ∈M , and then plays an action aS ∈ AS in the stage game.
The set of strategies for the Sender is thus

SS :=

½
(“Opera”, Opera) , (“Club”, Club) ,
(“Opera”, Club) , (“Club”, Opera)

¾
,

while the set of strategies for the Receiver is listed in table 2.1. Both the
Always Opera and Always Club strategies ignore the messages completely.
Literal strategy and Opposite strategy both respond to a message by going to
the Opera and the other message by going to the Club, and hence are essentially
the same up to their renaming.
In addition, We can see from table 2.1 that message “opera” and message

“club” are complete symmetric in the sense that if we swap the names of these

two messages, we end up with exactly the same strategy set SR as in table 2.1.
This should not be surprising because in traditional economic models of com-
munication, messages have no inherent meanings – the meaning is determined
by the equilibrium.
However, the idea that messages have no inherent meanings is counter-

intuitive. If the Receiver does respond differently to the two messages “opera”
and “club,” it’s generally common knowledge how he is going to respond. Sup-
pose, the Sender says the messages in a very sincere and literal way, it is natural
that if the Receiver responds differently to different messages, he will use the
Literal strategy, not the Opposite strategy. Suppose, to the contrary, the

Sender says ”You’d better go to the Opera” in a sarcastic way. If this sarcasm
is commonly understood by the Sender and the Receiver, possibly through the
tone or the gesture, then it is natural that there is common knowledge that the
Receiver would use the Opposite strategy if he decides to respond differently to
the two different messages.
If we assume that the two players are both native English speakers and

come from the same cultural background, and thus they perfectly understand
the meaning that the other person tries to convey from the words uttered, the
tone, and the body language, then it is without loss of generality to consider only
the sincere tone. Suppose it is common knowledge that the Receiver follows

the convention of language and never uses Opposite. We are thus describing a
different game which I call the language game GL, where the set of strategies
for the Receiver is

SRL := {Always Opera,Always Club, Literal} .

We will show that the unique outcome that survive three rounds of deletion of
weakly dominated strategies is for both players to go to the Opera.
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In the first round of deletion of weakly dominated strategies, sending the
message “opera” and going to the Club is weakly dominated for the Sender by
sending the message “club” and going to the Club. This is because if the Sender
is going to the Club, she prefers the Receiver to go to the Club. If what the
Sender says affect what the Receiver does, she gets her preferred action only if

she says “club.” Likewise, the strategy (“ {Club} ”, Opera) is weakly dominated
for the Sender by the strategy (“ {Club} ”, Opera).
Therefore, in the second round of deletion of weakly dominated strategies,

the strategy Always Opera is weakly dominated by the strategy Literal, and
the strategy Always Club is weakly dominated by Literal strategy. The only
Receiver strategy that survives the second round is thus the Literal strategy.
In the third round, the Sender knows that if she says “club,” the Receiver

will go to the Club and thus it’s best for her to go to the Club, and if she says
“opera”, the Receiver will go to the Opera and thus it’s best for her to go to

the Opera as well. Since she likes (Opera,Opera) better than (Club, Club),
the optimal strategy for her is to say “opera” and go the the Opera. Thus,
we obtain the unique outcome that they coordinate on the Sender’s preferred
equilibrium.

2.2 Coordination with positive spillovers

To understand the role of the self-signalling criterion, let’s look at the Invest-
ment game in figure 2.2. As in the Battle-of-the-Sexes game, there are two
Nash equilibria in this game: (Invest, Invest) and (Not,Not). The promise
“I’m going to invest” is self-committing because if the Sender believes that the
Receiver is going to believe the statement and play his best response, it is opti-
mal for the Sender to carry out the promise and play the strategy Invest. In

Farrell’s point of view, this message is thus credible and should be believed.
Aumann argues that this promise is not self-signalling and hence is not credi-
ble. Even if the Sender intends to play Not, possibly due to lack of confidence
that Receiver is really going to Invest, she still prefers the Receiver to use the
strategy Invest. Therefore, she would like the Receiver to believe her promise
regardless of her intended action. If she is pessimistic about the effect of com-
munication and believes that, with high probability, the Receiver is going to
Not Invest regardless of what she says, then she would prefer to Not Invest.
However, if the probability that the Receiver uses the strategy Invest is higher
after hearing the promise ”I’m going to invest”, the Sender would like to make

that promise even though she does not intend to carry it out.
Let’s look at the cheap talk extension game in detail. Suppose M =
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Receiver
Invest NotInvest

Sender’s actions Invest 2, 2 −1, 1
NotInvest 1,−1 0, 0

Table 3: Investment Game

“invest” “not”
Always Invest Invest Invest
Never Invest Not Not
Literal Invest Not
Opposite Not Invest

Table 4: Receiver’s Strategies in Investment Game

{“invest”, “not”}. Then the set of strategies for the Sender is

SS := {(“invest”, Invest) , (“not”, Not) , (“invest”, Not) , (“not”, Invest)} ,
while the set of strategies for the Receiver is listed in table 2.2. Suppose it is
common knowledge that the Receiver follows the language convention and never
uses the strategy Opposite. In the transformed game GL, the set of strategies
for the Receiver is thus

SRL := {Always Invest,Never Invest, Literal} .
We will now show that every outcome remains after one round of deletion

of weakly dominated strategies, when the iterative process stops. Sending the
message “not” and using the strategy Invest is weakly dominated by sending
the message “invest” and using the strategy Invest, because when the Sender
invests, she prefers the Receiver to invest, and whenever talking affects the out-
come, she gets her preferred action only by saying “invest.” Since the Sender
has the same preference over the Receiver’s actions regardless of the action

she takes, the same argument shows that (“not”,Not) is weakly dominated
by (“invest”, Not). Thus, after the first round of deletion, only the mes-
sage “invest” survives. The process of iterative deletion of weakly dominated
strategies stops after the first round, because the Receiver, after receiving the
message, still does not know what the Sender is going to play, and thus might
play Never Invest if he is pessimistic about the Sender’s intention, and either
Literal or Always Invest if he is optimistic. After the first round of deletion,
the two Receiver strategies, Literal and Always Invest, are payoff-equivalent
for the Receiver because they differ only in the action taken after the message
“not”, which is reached with probability zero.
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Unlike in the Battle-of-the-Sexes game, when there are positive spillovers,
pre-game communication does not eliminate strategic uncertainties. These two
examples illustrate the role of the self-signalling criterion.

2.3 Partial Common Interest

The Fighting-Couple game in table 5 shows that communication can help players
avoid bad equilibria, even though their preferences are not fully aligned. The

game has one pure strategy equilibrium: (Home,Home). In one of the two
mixed strategy equilibria, both go to the Opera with probability 1

2 and go to the
Club with probability 1

2 . In the other mixed strategy equilibrium, both go to the
Opera with probability 1

8 , go to the Club with probability
1
8 and stayHome with

probability 3
4 . The mixed-strategy equilibrium where both staying Home with

probability 0 is the efficient one. Both going to the Opera and going to the Club
is consistent with going out, as opposed to staying home. One prefers to stay
Home if and only if the other stays Home. Moreover, avoiding staying Home
and restricting themselves to the submatrix {Opera,Club} × {Opera,Club} is
mutually beneficial for both players.

Now suppose the Sender has an opportunity to leave a voice message before
they play the one-shot game in table 5. She cannot possibly persuade the
Receiver to go to the Opera, nor can she persuade the Receiver to go to the
Club, because they have conflict of interest regarding the two actions. However,
it is self-committing for her to say “you should go out,” in the sense that if the
Receiver is persuaded and goes out, the Sender will go out, i.e., she will choose
to either go to the Opera or go to the Club, in which case, the Receiver prefers
to go out. In addition, the suggestion “you should go out” is also self-signalling
in the sense that the Sender prefers the Receiver to go out only if she plans to

go out herself.
Consider the suggestion “Definitely go out tonight, dear. Regarding where

to go, you should go to the opera.” We can write this suggestion as a 2-sequence
of decreasing subset: {Opera,Club} {Opera}. The suggestion “Definitely go
out tonight, dear. Regarding where to go, you should go to the club” is slightly
different from the previous one. Another possible suggestion, “You should stay
home,” on the other hand, is drastically different from the previous two. We
can write this message as “ {Home} ”. If the Receiver plays the same action
after receiving both suggestions “ {Opera,Club} {Opera} ” and “ {Home} ”,
then the Receiver ignores the first layer of literal distinction between going

out and staying home. Intuitively, the fine literal difference between the two
messages “ {Opera,Club} {Opera} ” and “ {Opera,Club} {Club} ” should also
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be ignored by the Receiver. That is, the Receiver should play exactly the
same action after receiving the message “ {Opera,Club} {Club} ”, the messages
“ {Opera,Club} {Opera} ” and “ {Home} ”. Suppose the set of messages is
M = {“ {Opera,Club} {Opera} ”, “ {Opera,Club} {Club} ”, “ {Fight} ”} .

Then the preceding discussion suggests the type of language assumption that
restricts the Receiver’s strategies to those in table 6.
We will now show that, in the language game GL, no player uses the action

Home after three rounds of deletion of weakly dominated strategies. In the
first round of deletion, the strategy (“{Opera,Club}{Opera}”,Home) is weakly
dominated by (“ {Home} ”,Home) for the Sender. In addition, Both

(“ {Opera,Club} {Opera} ”, Opera)
and (“ {Home} ”, Opera) are weakly dominated by the Sender strategy

(“ {Opera,Club} {Club} ”, Opera) .
Therefore, after the first round of deletion of weakly dominated strategies, if

the Sender suggests any non-violent action (either Opera or Club), she defi-
nitely plans to not fight; if the Sender suggests to fight, she definitely plans to
fight. Thus, it is weakly dominated for the Receiver to fight after a non-violent
suggestion; it is also weakly dominated for the Receiver to play a non-violent
action after the suggestion to fight. However, it is also weakly dominated in
the second round of deletion for the Receiver to play the Completely Literal
strategy, because they have opposing interests when restricting the game to
{Opera,Club}×{Opera,Club}. It can be easily checked that the set of strate-
gies that survive the second round of deletion of weakly dominated strate-
gies is thus{Opera Home,Club Home}. Therefore, the Sender can be guar-

anteed a non-violent response if she says either “ {Opera,Club} {Opera} ” or
“ {Opera, club} {Club} ”. Since she prefer any outcome in the submatrix

{Opera,Club} × {Opera,Club}
to anyone outside of that matrix, the strategy (“ {Fight} ”, F ight) is strictly
dominated in the third round.
The strategy set for the Sender that survives iterative admissibility is

{(“ {Opera,Club} {Opera} ”, Club) , (“ {Opera,Club} {Club} ”, Opera)} ,
while the strategy set for the Receiver that survives iterative admissibility is

{Opera Home, Club Home} .
Pregame communication guarantees both players a payoff of at least 2.
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Receiver’s actions
Opera Club Home

Sender’s actions Opera 2,4 4,2 0,0
Club 4,2 2,4 0,0
Home 0,0 0,0 1,1

Table 5: Fighting-Couple Game

“{opera,club}
{opera}”

“{opera,club}
{club}”

“{home}”

Always Opera Opera Opera Opera
Always Club Club Club Club
Always Home Home Home Home
Opera & Home Opera Opera Home
Club & Home Club Club Home
Completely Literal Opera Club Home

Table 6: Receiver’s Strategies in the Fighting Couple Game

3 The Model

In this paper, we focus on one-sided communication extension to finite two-
player games with complete information. The Sender (S) and the Receiver (R)
simultaneously choose an action aS , aR from a finite set AS and AR respectively.
Their payoffs are given by gS : AS × AR → R and gR : AS × AR → R. Write
g =

¡
gS , gR

¢
. We will abuse the notation and denote the stage game also by g.

In the one-sided cheap talk extension game G, the Sender sends a message from
a finite set M before they play the stage game g. A strategy for the Sender
in the reduced-form cheap talk extension game G, denoted by sS , is a message
m ∈ M and an action aS ∈ AS . A strategy for the Receiver in G, denoted

by sR, is a mapping from M to AR. To characterize the set of communication
outcomes with an existing language, we first transform the cheap talk game
G into the language game GL by directly restricting the set of strategies for
the Receiver to SRL . We motivate and describe the restricted set of Receiver
strategies in section 3.2. We then characterize the set of iteratively admissible
outcomes in the language game GL.
We focus on games where changing exactly one player’s action in the action

profile changes the payoff. This assumption will be carried throughout the
paper.
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Assumption The stage game payoff gi : AS ×AR → R is such that

gi
¡
aS , aR

¢ 6= gi
¡
a0S , aR

¢
;

gi
¡
aS , aR

¢ 6= gi
¡
aS , a0R

¢
for any aS 6= a0S , aR 6= a0R, and i = S,R.

This assumption implies that, in particular, the stage-game best response
correspondences for both players are well-defined functions. This condition is
weaker than genericity, which is a common assumption, and does not exclude

any of the motivating games in section 2.
We denote the stage-game best response functions by bi : Ai → Aj where

i, j ∈ {S,R} and i 6= j. When we mention “best response” later in the paper,
it refers to best response in the language game. Let XS ×XR be a subset of
SS×SRL , and i, j ∈ {S,R} where i 6= j. Two strategies si1 and si2 are equivalent
w.r.t. Xj if they give the same payoff to i under any of j’s strategies that belong
toXj . An observation that will be useful later is that, if every Receiver strategy
in XR is constant on a message subset E, then no two Sender strategies that
both use messages in E but take different actions can be equivalent w.r.t. XR.
A strategy si is said to be a strict best response to σj w.r.t. XS ×XR if

U i
¡
si,σj

¢ ≥ U i ¡s̃i,σj¢
for every s̃i ∈ Xi, and strict inequality holds for every s̃i which is not equivalent
to si w.r.t. Xj .

3.1 Solution Concept

For ease of exposition, we rewrite here the definition of the solution concept of
iterative admissibility taken from Brandenburger et al (2004).

Definition 1 Fix
¡
Xj
¢
j∈I ⊆

¡
Sj
¢
j∈I . A strategy si is weakly dominated with

respect to X−i if there exists σ̂i ∈ ∆Xi such that U i
¡
σ̂i, s−i

¢ ≥ U i ¡si, s−i¢
for every s−i ∈ X−i and that U i ¡σ̂i, ŝ−i¢ > U i

¡
si, ŝ−i

¢
for some ŝ−i ∈ X−i.

Otherwise, say that si is admissible with respect to
¡
Xj
¢
j∈I . If s

i is admissible
w.r.t.

¡
Sj
¢
j∈I , simply say that s

i is admissible.

Definition 2 Set Si (0) = Si for i ∈ I and iteratively define

Si (k + 1) =

½
si ∈ Si (k) :

si is not weakly dominated with respect to
¡
Si (k)

¢
i∈I

¾
.

Write ∩∞k=0Si (k) = Si (∞) and ∩∞k=0S (k) = S (∞). A strategy si ∈ Si (∞) is
called iteratively admissible.
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Denote by ∆X the set of probability distribution on X, and by ∆+X the
set of probability distribution which puts positive weight on every element of
X.
Brandenburger et al (2004) show that if there are only two players, say

player S and player R, a strategy is weakly dominated if and only if it is never

a best response to a totally mixed strategy. For completeness of arguments,
this equivalence result is restated as Lemma 1 below.

Lemma 1 (Brandenburger et al (2004)) A strategy ŝi ∈ XR where i ∈
{S,R} is admissible with respect to XS × XR if and only if there exists σ̂j ∈
∆+Sj where j 6= i such that UR

³
σ̂S , ŝR

´
≥ UR

³
σ̂S , sR

´
for every sR ∈ XR.

For our purpose we strenghten the charaterization of admissible strategies
as follows.

Corollary 1 A strategy ŝi ∈ XR where i ∈ {S,R} is admissible with respect to
XS ×XR if only if there exists σ̂j ∈ ∆+Sj where j 6= i to which ŝi is a strict
best response w.r.t. XS ×XR.

3.2 Incorporating Language

Consider a language L. Suppose L contains an expression for a subset of
Receiver actions B. Denote this expression by ξ0. If L also contains an
expression for logical negation “not,” then L contains an expression for the
idea “do not do B.” Denote this expression by ξ1. In another language L0,
the expression ξ0 may mean “please do B,” while the expression ξ1 may mean
“please do not do B.” Since messages are costless and are only means to convey
information, it does not matter which language the Sender and the Receiver are
speaking, as long as it is common knowledge that they speak the same language.

Suppose the common language that the Sender and the Receiver speak is L.
If the Receiver decides to ignore the Sender’s messages, whatever the Sender
says does not matter and the Receiver takes the same action regardless. If the
Receiver decides to respond to ξ0 and ξ1 differently because he thinks the Sender
conveys information through her messages, he refers to his own knowledge L and
responds to message ξ0 with an action in B while to message ξ1 with an action
not in B.1

1 Some may argue that the Receiver would want to take the Opposite strategy in a matching
penny game. However, if the Sender knows the payoff structure of a matching penny game,
and if she knows that the Receiver uses language L0 in a matching penny game, she will give
recommendations according to L0, thereby destroying the incentive for the Receiver to use
language L0. In this case, one may argue that the Receiver randomizes his actions after
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In the Battle-of-the-Sexes game, if we let B refer to going to the opera, then
“not B,” i.e. “not go to the opera,” is equivalent to “go to the club,” since this
is the only choice other than going to the opera. In the Fighting-Couple game,
the expression, “go out”, is saying exactly the same thing as, “go to the opera or
go to the club”, and the expression, “do not go out”, says the same thing as, ”go

home”. If the Receiver responds differently to the two recommendations, “go
out”, and, “go home”, then we see from previous discussion that he responds
to, “go out”, by going out. However, the Receiver still has to decide whether
to go to the opera or the club. Carrying this idea forward, lets suppose that
the subset of Receiver actions B contains a strict subset B2, and the language L
contains an expression for B2. Suppose further that L contains an expression
ξ00 that is simply a concatenation of ξ0 and the expression for B2. Then with
the expression for logical negation, L contains an expression ξ01 which is the
concatenation of ξ0 meaning ,“do not do B”, and the expression for, “within

B1, do not do B2”. That the receiver may decide that the messages, “go out”,
and, “go home”, convey separate information, but decide to ignore the finer
differences between, “go out; furthermore, go to the opera”, and “go out; and
then go to the club’. Then the Receiver takes the same action after receiving
both message ξ00 and ξ01. However, if the Receiver decides not to ignore
the finer difference between the recommendations ξ00 and ξ01, he refers to his
knowledge of L and responds to message ξ00 with action B2 and to message ξ01
with an action in B1 but not in B2.
Let M denote every message that the Sender could possibly utter. We also

assume that the language L the players commonly speak contains an expression

for every subset of Receiver actions, an expression for logical negation, and an
expression for concatenation. Then, the language L contains an expression for
every strictly decreasing sequence of subsets of Receiver actions A1A2...An. As
a convention, let A0 = AR and An+1 = ∅. Each sequence can be seen as a
sequence of instructions with finer and finer details. The set of all such sequences
where the last subset has only one element is called the set of hierarchical

receiving a message. This could be achieved by randomizing between the Always B strategy,
and the Never B strategy.
Some also argue that the Receiver plays the Literal and Opposite strategies at the same

time. This argument is supported by observing the game being played many times. Through-
out these observations, there are incidents where the Receiver takes action B after message
ξ0 and after message ξ1. There are also incidents where the Receiver takes action not in B
after message ξ0 and after message ξ1. These observations do not refute the hypothesis that
the Receiver does not play the Opposite strategy because all of the aforementioned outcomes
may be realizations of a Receiver strategy that randomizes between Always B and Never B.
Finally, in a matching penny game, the Receiver actually has no incentive to respond dif-
ferently with the Sender’s messages, because he knows that the Sender will not convey any
information about her intention.
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recommendations, denoted by Mh. Given a hierarchical recommendation m =

A1...An, we call Aj the jth level of instruction. DefineM (A1...Aj) to be the set
of all messages that start with the strictly decreasing sequence A1...Aj . Every
message m in M (A1...Aj) express the same idea of “Do A1. Further more,
take an action in A2. ....To be even more precise, do Aj”.

Let sR be a mapping from the set of messages M to the set of Receiver ac-
tions AR, and m = A1...An a hierarchical recommendation. Let aR = sR (m).
Let γ be the highest level of instruction the action aR is consistent with ac-
cording to m. That is, aR ∈ Aγ\Aγ+1. Therefore, within the subset of Aγ ,
the action aR is “opposite to” the instruction of Aγ+1. Our previous discussion
suggests that, if sR is a language-based Receiver strategy, then either sR takes
the same action after both expressions for A1...Aγ (Aγ+1) and expressions for
A1...Aγ (Aγ\Aγ+1), or sR responds to expressions for A1...Aγ (Aγ+1) with ac-
tions in Aγ+1 and expressions for A1...Aγ (Aγ\Aγ+1) with actions in Aγ\Aγ+1.

Therefore, if sR is language-based and sR (m) ∈ Aγ\Aγ+1, sR must ignore dif-
ferences between Aγ+1 and Aγ\Aγ+1, and takes the same action after both
expressions for A1...Aγ (Aγ+1) and expressions for A1...Aγ (Aγ\Aγ+1). That
is, sR takes the “opposite” action to the instruction Aγ+1. The preceding
discussion suggests that, if sR is a language-based Receiver strategy, then

sR (m0) = sR (m)

for every message m0 ∈ M (A1...AγAγ+1) ∪M (A1...Aγ (Aγ\Aγ+1)). Call the
set

M (A1...AγAγ+1) ∪M (A1...Aγ (Aγ\Aγ+1))

the constrained message set given message m and action aR. Formally, given
m ∈M and aR ∈ AR, define

M cstr
¡
m,aR

¢ ≡
⎧⎨⎩ M (A1...AγAγ+1)
∪M (A1...Aγ (Aγ\Aγ+1))

m

if m ∈Mh and γ such that
aR ∈ Aγ\Aγ+1

otherwise
.

Now we formally define our language assumptions.

Definition 3 sR : M → A is a language-based Receiver strategy, denoted by

sR ∈ SRL , if and only if sR is constant on Mcstr
¡
m, sR (m)

¢
, for every m ∈M .

This definition is best illustrated with graphs. Suppose AR = {A,B,C,D}.
Figure 2 shows some hierarchical recommendations in this game. There are
many different ways to group AR. The first level of instruction can be about
taking action D or not taking action D, as shown by the two branches {D}
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and {A,B,C} that diverge from each other. The first layer of instruction can
also tell you whether to take actions in {A,C} or not, as shown by the two
branches {A,C} and {B,D}. Given a first-layer instruction {A,B,C}, the
second layer of instruction could be about whether to take action A or not,
as shown by the two branches {A} and {B,C} that diverge one node on the
branch of {A,B,C}. In general , expressions that are “opposite to” each other
at some level of instruction are drawn to diverge from the same node. We
call all the messages that diverge from the same node a message bundle. A
message branch A1...Aj , on the other hand, consists of all messages that start
with instructions A1...Aj . For example, all the messages in the circle in figure
2 constitutes message branch {A,B,C}, while the message “ {D} ” combined
with all messages in the red circle constitute a message bundle. There can be
several parallel message bundles on a branch, which represent different ways to
subdivide the set of Receiver actions relevant for the branch.

Suppose we choose the branch of {A,B,C} and then choose {B}, we end up
with the message “ {A,B,C} {B}.” The set M ({A,B,C} {A,C}) consists of
two messages: “ {A,B,C} {A,C} {A} ” and “ {A,B,C} {A,C} {C}.” Within
the broad instruction {A,B,C}, these two messages are both “opposite to”
message “ {A,B,C} {B}.”
Given message {A,B,C} {B} and Receiver action C, we first find that action

C belongs to the subset {A,B,C} but not to the subset {B}. According to the
definition, the constrained message set given m and aR is thus the following set
of messages:

{“ {A,B,C} {B} ”, “ {A,B,C} {A,C} {A} ”, “ {A,B,C} {A,C} {C} ”} .

If a language-based Receiver strategy sR responds to message “ {A,B,C} {B} ”
with action C, then by definition, sR takes action C after receiving message
{A,B,C} {B},” “ {A,B,C} {A,C} {A} ” and “ {A,B,C} {A,C} {C}.”
We call M cstr

¡
m, bR

¡
aS
¢¢
the constrained message set of the pure Sender

strategy
¡
m,aS

¢
. Every message in M cstr

¡
m, bR

¡
aS
¢¢
recommends actions

in Aj which includes the Receiver’s best response to aS . Let
¡
m1, a

S
1

¢
and¡

m2, a
S
2

¢
be two Sender strategies with overlapping constrained message sets

where bR
¡
aS1
¢ 6= bR

¡
aS2
¢
. It is esay to see that the constrained message set

of one Sender strategy must contain that of the other. Let Aj be the last

common level of instruction in the larger of the two constrained message sets.
In a way, both message m1 and m2 share the recoomendation of Aj . If we see
all messages in the larger constrained message set as one compound message,
then these two Sender strategies essentially use the same message for different
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intentions. It is immediate from the definition of constrained message set that
no Receiver strategy consistent with language can be a best response to both¡
m1, a

S
1

¢
and

¡
m2, a

S
2

¢
.

On the other hand, if
¡
m1, a

S
1

¢
and

¡
m2, a

S
2

¢
has disjoint constrained message

set and bR
¡
aS1
¢ 6= bR

¡
aS2
¢
, given any Receiver strategy in a certain class, we

can modify it in a minimal way so that it is a best response to both
¡
m1, a

S
1

¢
and

¡
m2, a

S
2

¢
.

Lemma 2 Let
¡
m1, a

S
1

¢
and

¡
m2, a

S
2

¢
be two Sender strategies in SS (j) with

disjoint constrained message set where bR
¡
aS1
¢ 6= bR

¡
aS2
¢
. Let E and B be

the smallest message branch and message bundle respectively, containing the
constrained message sets of both Sender strategies. Then

1. there exists a Receiver strategy in SR (j + 1) non-constant on B, and

2. there exists a mapping ψB : S
R (j) → SR (j) such that ψB

¡
sR
¢
= sR for

every sR ∈ SR (j) constant on B, while for sR ∈ SR (j) non-constant on
B, ψB

¡
sR
¢
is equal to sR outside of E and ψB

¡
sR
¢
responds to message

mi with bR
¡
aSi
¢
, i = 1, 2.

4 Results

In this section we generalize the intuition gained from the contrast between the
Battle-of-the-Sex game and the Investment game. Section 4.1 gives sufficient
conditions for one-sided pre-game communication to guarantee coordinated play
in a coordination game. Section 4.2 shows that, when the Sender’s preference
over the Receiver’s actions is independent of the Sender’s own action, every

rationalizable outcome in the stage game is an iteratively admissible outcome
of the language game.

4.1 A Sufficient Condition to Guarantee Stackelberg Pay-
off for the Sender

In Farrell’s definition, messages are about intended actions. In this chapter,
we focus on messages that serve as recommendations of actions to the Receiver.
We can easily translate a message about the speaker’s intended action into a

recommendation for the Receiver, since the payoff matrix of the stage game is
common knowledge, and thus the Receiver can infer from the speaker’s claim
about her intended action what the speaker wants the Receiver to do. For
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example, the message, “I will take action aS”, is equivalent to a recommendation
for the Receiver to take his best response to aS .
Let bi denote the best reply correspondence for player i in the stage game,

i = S,R. Since we focus on games where changing only one player’s action
changes both players’ payoff, the aforementioned best response correspondence

bi is in fact a function.
For ease of comparison, we re-write the formal definition of the condition of

self-committing by Baliga and Morris (2002) in the following. We then give our
version of the definition.

Definition 4 (Baliga and Morris (2002)) Claim about intended action aS

is self-committing if bS
¡
bR
¡
aS
¢¢
= aS.

Definition 5 Recommendation aR ∈ AR is self-committing if bR ¡bS ¡aR¢¢ =
aR.

Definition 6 The stage game g is self-committing if every recommendation
aR ∈ AR is self-committing.

It is straightforward to see that the recommendation aR is self-committing if
and only if the claim about intended action bS

¡
aR
¢
is self-committing because

bS
¡
bR
¡
bS
¡
aR
¢¢¢

= bS
¡
aR
¢
.

The definition Aumann (1990) gives for self-signalling criterion is as follows.
A statement is self-signalling if the speaker would want it to be believed only if it
is true. We can thus say that a recommendation is self-signalling if the speaker
would want it to be followed only if she plans to take the action which makes

the recommendation optimal for the Receiver. This definition implies that the
speaker would NOT want her recommendation bR

¡
aS
¢
to be followed if her

planned action would not make this recommendation optimal for the Receiver,
that is, if she planned to take an action different from aS . This suggests that
the self-signalling condition is a property on the stage game as whole, not one
about individual actions.
Baliga and Morris formalizes the definition as follows.

Definition 7 (Baliga and Morris (2002)) The game g is self-signalling (for
the Sender) if gS

¡
aS , bR

¡
aS
¢¢
> gS

¡
aS , aR

¢
for every aS ∈ AS, and aR ∈ AR

where aR 6= bR ¡aS¢.
The following proposition gives a sufficient condition for the Sender to be

guaranteed her Stackelberg payoff.
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Receiver’s actions
A B C

Sender’s actions a 2, 3 1, 2 −1,−9
b 0, 0 4, 3 −1, 2
c 1,−9 2, 2 3, 3

Table 7: A Stage Game with Three Receiver Actions

Proposition 1 If the stage game g is self-signalling and self-committing, then
any strategy profile

¡¡
m,aS

¢
, sR

¢
that survives iterative deletion of weakly dom-

inated strategies in the language game gives the Sender her Stackelberg payoff,
that is,

gS
¡
aS , aR

¢
= max

aS
uS
¡
aS , bR

¡
aS
¢¢

for every
¡¡
m,aS

¢
, sR

¢ ∈ SL (∞).
4.1.1 An Example

To see the main idea behind the proof, it is easy to start with a simple ex-
ample. The game is shown in table 7. This game is generic and has three
pure strategy Nash-equilibria: (a,A) , (b,B) and (c, C). It is obvious that every
recommendation is self-committing, and this game is self-signaling.
For ease of exposition, we will assume that the Sender can only give hierarchi-

cal recommendations that start with either “{B}” or “{A,C}.” The very top of
figure 1 lists every such message. The bottom table in figure 1 lists every Sender
strategy that survives the first, third, and fifth round of deletion of weakly dom-

inated strategies. Action a is listed in the cell at the intersection of row SS (1)
and column “ {A,C} {A} ”, while action b and c is not listed in that cell. This
indicates that taking action a after sending the recommendation “ {A,C} {A} ”
survives the first round of deletion of weakly dominated strategies, while taking
action b or action c after sending the recommendation “ {A,C} {A} ” does not.
The table in the middle of figure 1 lists Receiver strategies that survive the 0th,
the second and the fourth round of deletion of weakly dominated strategies.
For example, the Receiver strategy, First Layer and A, shown in the fourth
row in the right panel of figure 1, responds to message “ {B} ” with action B,
and to both message “ {A,C} {A} ” and message “ {A,C} {C} ” with action A.
By definition, every language-based Receiver strategy survives the 0th round of
deletion of weakly dominated strategies in the language game.
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{B}

{A,C}

{A} {C}

Completely Literal

Completely Literal

Always C

Always A

Completely Literal

First Layer and C

First Layer and A

Always C

Always B

Always A

BBB

AAA
S (0)

Receiver 
strategies

CCC

AAB

CCB

CAB

AAA

CAB

CAB
S (4)

CCCS (2)

R

R

R

a

c

a,
b,
c

S (1)
Sender 
strategies

cab

bS (5)

S (3)

S

S

S

Figure 1: The Iterative Process for a Game with Three Receiver Actions
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The Sender strategy that takes action c after sending the recommendation
“ {A,C} {A} ” does not survive the first round of elimination for the Sender be-
cause by the self-signalling condition, the Sender prefers the Receiver action C to
any other Receiver action if the Sender is going to take action c, and thus taking
action c after sending the recommendation “ {A,C} {A} ” is weakly dominated
by taking the same action c while sending the recommendation “ {A,C} {C}.”
It can be shown in a similar way that taking action b after sending the rec-
ommendation “ {A,C} {A} ” is weakly dominated by the Sender strategy that
takes action b but sends the recommendation “ {B}.”
However, it is not the case that every Sender strategy that takes an action

which makes the recommendation suboptimal for the Receiver is weakly domi-
nated in the first round of deletion. For example, taking action c after giving
the recommendation “ {B} ” is not weakly dominated in the first round because
it is the best response to the belief

(1− ε)Always C + ε (1− ε)First Layer and A+ ε2σR

for ε sufficiently small and any totally mixed Receiver strategy σR.
Proceeding to the second round of deletion, First Layer and B, is weakly

dominated by the Receiver strategy, Literal, in the second round, because 1)
these two strategies are not equivalent since they differ only in their response
to message “ {A,C} {A} ” and message “ {A,C} {A} ” is used by a Sender
strategy in SS (1), and 2) every Sender strategy in SS (1) that uses message

“ {A,C} {A} ” involves taking action a, and Receiver action A does strictly
better than Receiver action C given that the Sender plays action a.
In the third round of deletion, the Sender strategy (“ {B} ”, c) is weakly dom-

inated by the Sender strategy (“ {A,C} {C} ”, c) because any Receiver strategy
surviving the second round of deletion that takes different action after the two
messages responds to message “ {A,C} {C} ” with action C, which is most pre-
ferred by the Sender given her action c.
The Sender strategy (“ {B} ”, b) survives the third round of deletion because

it is a best response to the Receiver strategy

(1− ε)Completely Literal + ε2σR

where ε is very small and σR is any totally mixed Receiver strategy in SR (2).
This in turn leads to the deletion of Receiver strategies Always C and Always A
in the fourth round by Completely Literal.
It follows that, after four rounds of deletion of weakly dominated strategies,

the message “ {B} ” will certainly induce action B. Since the strategy pro-
file (b,B) gives the Sender her highest payoff, the Sender strategy that sends
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message “ {B} ” and takes action b strictly dominates any other Sender strat-
egy remaining after four rounds of deletion of weakly dominated strategies.
Therefore, the unique outcome surviving iterative deletion of weakly dominated
strategies gives the Sender her Stackelberg payoff.
This example illustrates two points. First, Sender strategies which use a

message whose ultimate recommended action is not optimal for the Receiver
given the Sender’s intention may still survive the first round of deletion, even
though the stage game is a pure coordination game. One such Sender strat-
egy in this particular example is (“ {B} ”, c). This is because the Sender is
afraid that the Receiver may follow those layered recommendations only halfway.
Once those Receiver strategies that follow recommendations like “ {A,C} {C} ”
halfway are eliminated, those Sender strategies that do not recommend the Re-
ceiver’s best response to the Sender’s intention may subsequently have a chance
to be eliminated. Second, to continue the iterative process and eliminate those

Sender strategies, we need to show that a Sender strategy that serves as a
dominator remains when those Receiver strategies that follow only halfway are
eliminated.

4.1.2 The Proof

Denote the size of the set of Receiver strategies AR by N . We can arbitrarily
order Receiver actions and write

AR =
©
aR1 , ..., a

R
N

ª
.

Define aSi to be b
S
¡
aRi
¢
. Let φ denote a permutation of {1, 2, ..., N} and Φ

the set of all permutations of {1, ...,N}, with id being the identity permutation.
Define

mφ(N−k) = A1...AN−k−1
n
aRφ(N−k)

o
where Aj = Aj−1\

n
aRφ(j)

o
for j = 1, ..., N − k − 1. Define Mφ(N−k) to be

the set of hierarchical messages that share in common the first N − k− 1 levels
of instruction which eliminates one action at a time from the previous level
according to φ. Formally, define

Mφ(N−k) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m = A1...AN−kAN−k+1...An|
Aj % Aj+1, ∀j = 1, ..., n− 1;

Aj = Aj−1\
n
aRφ(j)

o
∀j = 1, ...,N − k

n ≥ N − k

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Figure 2 shows a partial set of hierarchical recommendations. Let φ be such
that aRφ(1) = D, aRφ(2) = B, aRφ(3) = C and aRφ(4) = D. Then the messages in
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{D} {A,B,C}

{A} {B,C}

{B} {C}

{A,C}

{A} {C}

{B} {A,B}

{A} {B}

{C}

{A,C} {B,D}

{A} {C} {A} {C}

{A,C} {B,D}

{A} {C} {A} {C}

Figure 2: Partial Set of Hierarchical Recommendations, AR = {A,B,C,D}.

the circle of figure 2 constitute the set Mφ(1), while the message “ {D} ” is the
message mφ(1).
The following observation basically says that, if the Sender intends to take

some action âS , then it is weakly dominated for the Sedner to use a message

that has, through a process of one-by-one exclusion, recommended the Receiver
NOT to take his best response to âS . For example, it implies that taking action
d, to which the Receiver’s best response isD, and sending a message in the circle
in figure 2 is weakly dominated in the first round by the Sender strategy that
takes action d but uses the message “ {D}.”

Observation Given a Sender action aS and a permutation φ and any message
m ∈Mφ(q) where q is such that bR

¡
aS
¢
= aRφ(q), then the Sender strategy¡

m,aS
¢
is weakly dominated in the first round by the Sender strategy¡

mφ(q), a
S
¢
.

This follows immediately by noticing that every language-based Receiver
strategy that takes different actions after receiving message mφ(q) and m ∈
Mφ(q) responds to message mφ(q) with action aRφ(q), which is most preferred by
the Sender given that she takes action aS due to the self-signalling condition,
and the two messages are not equivalent in the first round. It implies that for
every Sender strategy

¡
m,aS

¢
surviving the first iteration where m ∈Mφ(q), its

constrained message set is contained in Mφ(q).
Communication may fail to achieve coordinated play only if the Receiver

makes wrong inference about the Sender’s intention from the message he re-
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ceived. This may happen only if the message in use is associated with at least
two different Sender actions. Proving that every iteratively admissible outcome
gives the Sender her Stackelberg payoff involves ruling out situations like this.

Definition 8 A subset of messages E is intention-clear given a collection of

Sender strategies Ξ if

1. the constrained message set of every Sender strategy
¡
m,aS

¢
in Ξ where

m ∈ E is contained in E, and

2. every pair of Sender strategies in this collection Ξ that use messages in E
either share the same intention or have disjoint constrained message sets.
That is, ∀ ¡m1, a

S
1

¢
,
¡
m2, a

S
2

¢ ∈ Ξ, either aS1 = aS2 or
Mcstr

¡
m1, b

R
¡
aS1
¢¢ ∩Mcstr

¡
m2, b

R
¡
aS2
¢¢
= ∅.

Let E be either a message bundle or a message branch and B be the smallest
message bundle strictly containing E. An example is B as the message set
consisting of the circle and the message “ {D} ” in figure 2 and E as the message
set consisting of “ {B} ” and messages starting with “ {AC},” or E is the set of
messages in the circle. Suppose E is intention-clear given SS (k). Lemma 2
implies that, for every Receiver strategy sR in SR (k + 1) that is non-constant
on B, SR (k + 1) contains a Receiver strategy ψE

¡
sR
¢
equal to sR outside of

E but is a best response to every Sender strategy in SS (k) that uses a message
in E. It follows from intention-clearness of E given SS (k) that if sR is not a

best response to some Sender strategy in SS (k) that uses a message in E, sR

would be weakly dominated by ψE
¡
sR
¢
, a contradiction to the construction of

sR. This is stated formally in lemma 3.

Lemma 3 Let E be either a message bundle or a message branch and F be the
smallest message bundle strictly containing E. If E is intention-clear given
SS (k), then given any Sender strategy

¡
m,aS

¢
in SS (k) that uses a message

in E and any Receiver strategy sR ∈ SR (k + 1) that is non-constant on F , we
have

sR (m) = bR
¡
aS
¢
.

We can deduce thatMφ(N−3) is intention clear given SS (3) by lemma 3, ob-

servation 4.1.2 and the observation that the Sender strategy
³
mφ(N−l), aSφ(N−l)

´
belongs to SS (2) for every l = 0, ..., N − l where aSφ(N−l) = bS

³
aRφ(N−l)

´
.

Lemma 4 is the key step in establishing proposition 3.
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Lemma 4 ∀k = 1, ..., N−1, the message setMφ(N−k−1) is intention-clear given
SS (4k − 1).

Since M ⊃Mφ(0), after sufficiently many rounds of deletion, the Sender can
convey her intention without fail, and thus every iteratively admissible outcome

achieves coordinated play. In particular, this implies that if there exists an
admissible Sender strategy that uses a Stackelberg action, then this Sender
strategy yields the Stackelberg payoff under any admissible belief. Therefore,
if there exists an admissible Sender strategy that uses a Stackelberg action,
then every admissible Sender strategy uses a Stackelberg action. Proposition
3 immediately follows because there must exist an admissible Sender strategy
that uses a Stackelberg action, since no such Sender strategy can be weakly
dominated by a Sender strategy that does not use a Stackelberg action.
We prove lemma 4 by induction. To visualize the inductive process, think of

Mφ(N−k−1) as the messages in the circle in figure 2. Assuming that the circle is
intention-clearn given SS (4k − 1), we first show that the circle plus the message
“ {D} ” is intention-clear given SS (4k + 1), and then show that the set of all
messages shown in figure 2 (Mφ(N−k−2)) is intention clear given SS (4k + 3).
We need to show that, given a pair of Sender strategies in SS (4k − 1) which
use messages in Mφ(N−k−2) and have overlapping constrained message sets, at
least one of them is weakly dominated w.r.t. S (4k + 3). To show that

¡
m,aS

¢
is weakly dominated at or before the (4k + 3)th round of deletion, we need to
show the existence of a Sender strategy

¡
m̂, âS

¢
that may weakly dominate¡

m,aS
¢
w.r.t. S (4k + 3). In the case where m = mφ(N−l) for some l =

0, ...,N − 1, lemma 5 gives conditions for existence of dominators of
¡
m,aS

¢
that use messages in Mφ(N−k−1). In all other cases, the constrained message
set of

¡
m,aS

¢
belongs to some message bundle E. Lemma 6 gives conditions for

existence of dominators of
¡
m,aS

¢
that use messages in a message set parallel

to E.
To establish existence of dominators of

¡
m,aS

¢
, we need to show that the

desired potential dominator “outlives”
¡
m,aS

¢
. We do so by minimally mod-

ifying an anti-best response of
¡
m,aS

¢
and show that its Sender best response

gives us the desired properties. Given a message bundle E, let B denote the
smallest message bundle strictly containing E. We define ΨB to be a mapping

from SRL to a subset in SRL such that ΨB
¡
sR
¢
=
©
sR
ª
for sR constant on B,

while for sR non-constant on B, ΨB
¡
sR
¢
is the set of all Receiver strategies in

SRL that is equal to s
R outside of B. ΨB is a collection of minimal modifications.
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Let

ΨB
¡
σR
¢
=

⎧⎨⎩ σ0R ∈ ∆SRL :
∀sR ∈ SRL , ∃ψB

¡
sR
¢ ∈ ΨB ¡sR¢ such that

σ0R
¡
ψB

¡
sR
¢¢
= σR

¡
sR
¢

⎫⎬⎭ .
Given any σR ∈ ∆SRL , ΨB

¡
σR
¢
is the set of strategies “minimally modified”

from σR that will give us potential dominators that use messages in B.

Suppose we want a potential dominator of
¡
m,aS

¢
to use the same action

and send a message in the same message bundle E as m, then the highest payoff
to the potential dominator given that the Receiver uses strategies in ΨB

¡
σR
¢

for some σR ∈ ∆SRL is

χ
¡
σR, B, aS

¢ ≡
X

sR constant
on B

σR
¡
sR
¢
gS
¡
aS , sR (m)

¢
+

X
sR non-constant

on B

σR
¡
sR
¢
gS
¡
aS , bR

¡
aS
¢¢
.

This level is obtained if the Sender uses message m in B and the Receiver uses

strategy ψ
¡
σR
¢ ∈ ΨB ¡σR¢ such that ψ ¡sR¢ (m) = bR ¡aS¢ for every sR non-

constant on B which receives positive weight from σR. In general, the potential
dominator uses a message in E and an action âS that maximizes χ

¡
σR, B, a0S

¢
over a subset of Receiver actions. In the iteration where we aim to show weak
dominance of

¡
m,aS

¢
, typically the payoff to

¡
m,aS

¢
given σR is strictly lower

than χ
¡
σR, B, aS

¢
, and the potential dominator gives a payoff at least as high

as χ
¡
σR, B, aS

¢
.

To understand lemma 5, we need to define an action-strict best response.

Definition 9
¡
m̂, âS

¢
is an action strict best response to σ̂R w.r.t. SR (k) for

some iteration k if it gives the Sender a strictly higher payoff against σ̂R than

any other Sender strategy that uses some action different from âS.

Lemma 5 Suppose a Sender strategy
¡
mφ(N−l), aS

¢
survives the kth round of

deletion of weakly dominated strategies, where bR
¡
aS
¢
= aRφ(q) and q 6= N − l.

Write aS = aSφ(q). If

1. (Unclear Intention) mφ(N−l) ∪ Mφ(N−l) is not intention-clear given
SS (k), and

2. (No Sincere Recommendation) no Sender strategy that takes action
aSφ(q) while using a message in Mφ(N−l) survives the kth round of deletion,
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then for every Receiver strategy σR ∈ ∆SR (k − 1) to which the Sender strat-
egy ³

mφ(N−l), aSφ(q)
´

is a best response, there exists a Sender strategy
¡
m̂, âS

¢
in SS (k) and a mixed

Receiver strategy ψ
¡
σR
¢ ∈ ∆SR (k − 1) that belongs to

Ψmφ(N−l)∪Mφ(N−l)
¡
σR
¢

such that

A m̂ ∈Mφ(N−l) and âS 6= aSφ(q);

B
¡
m̂, âS

¢
is a best response to ψ

¡
σR
¢
, and

C

χ
³
σR,mφ(N−l) ∪Mφ(N−l), aSφ(q)

´
≤ χ

¡
σR,mφ(N−l) ∪Mφ(N−l), âS

¢
.

To visually grasp the idea in lemma 6, think of message sets E, F1 and F2
as those denoted in figure 2.

Lemma 6 Let E be a message bundle in Mφ(N−l), and F1 and F2 be two other
parallel message bundles in Mφ(N−l). Let

¡
m̂, âS

¢
be a Sender strategy in

SS (k) for some iteration k where m̂ ∈ E, and σ̂R be a totally mixed strategy

in SR (k − 1) to which ¡m̂, âS¢ is a best response. If there exists sR ∈ SR (k)
non-constant on mφ(N−l) ∪ Mφ(N−l) such that sR (m̂) 6= bR

¡
âS
¢
, then there

exists two Sender strategies
¡
m1, a

S
1

¢
,
¡
m2, a

S
2

¢
in SS (k) where

1. message m1 belongs to F1, message m2 belongs to F2, and

2. Sender actions aS1 and a
S
2 both maximize

χ
³
σ̂R,mφ(N−l) ∪Mφ(N−l), aS

´
over

n
aS : bR

¡
aS
¢
= aSφ(i), for some i > N − l

o
.

Proof of lemma 4. It is trivially true for k = 1 because Mφ(N−2) =©
mφ(N−1),mφ(N)

ª
, and if the Sender strategy

¡
mφ(N−1), aS

¢
belongs to SS (1),

then aS = aSφ(N−1).
Suppose it is true for k = 1, ..., k̄.
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Claim 1 mφ(N−k̄−1) ∪Mφ(N−k̄−1) is intention-clear given S
S
¡
4k̄ + 1

¢
.

Proof. Suppose to the contrary that there exists two Sender strategies¡
m1, a

S
1

¢
and

¡
m2, a

S
2

¢
in SS

¡
4k̄ + 1

¢
with overlapping constrained message sets

where m1,m2 belong to mφ(N−k̄−1) ∪Mφ(N−k̄−1) and b
R
¡
aS1
¢ 6= bR ¡aS2 ¢. We

can assume w.l.o.g. thatMcstr
¡
m1, b

R
¡
aS1
¢¢
is larger. By the assumption that

Mφ(N−k̄−1) is intention-clear given S
S
¡
4k̄ − 1¢, it cannot be the case that both

m1 and m2 belong to Mφ(N−k̄−1). It follows that the constrained message set

of
¡
m2, a

S
2

¢
must be mφ(N−k̄−1) ∪Mφ(N−k̄−1). That implies m2 = mφ(N−k̄−1)

and bR
¡
aS2
¢
= aRφ(q) where q 6= N − k̄ − 1. Observation 4.1.2 further implies

that q > N − k̄ − 1. Either there exists
¡
m0
2, a

S
2

¢
in SS

¡
4k̄ + 1

¢
where m0

2 ∈
Mφ(N−k̄−1), or the assumptions of lemma 5 holds. It follows that, given any

σR2 ∈ ∆+SR
¡
4k̄
¢
to which

¡
m2, a

S
2

¢
is a strict best response w.r.t. S

¡
4k̄
¢
, there

exists a Sender strategy
¡
m̂2, â

S
2

¢ ∈ SS ¡4k̄ + 1¢ where m̂ ∈ Mφ(N−k̄−1) such
that

χ
³
σR2 ,mφ(N−k̄−1) ∪Mφ(N−k̄−1), â

S
2

´
≥ χ

³
σR2 ,mφ(N−k̄−1) ∪Mφ(N−k̄−1), a

S
2

´
.

The assumption that Mφ(N−k̄−1) is intention-clear given S
S
¡
4k̄ − 1¢ combined

with lemma 3 implies that sR (m̂) = bR
¡
âS
¢
for every sR ∈ SR

¡
4k̄
¢
non-

constant on mφ(N−k̄−1) ∪Mφ(N−k̄−1). It follows that

uS
¡¡
m̂, âS2

¢
,σR2

¢
= χ

³
σR2 ,mφ(N−k̄−1) ∪Mφ(N−k̄−1), â

S
2

´
≥ χ

³
σR2 ,mφ(N−k̄−1) ∪Mφ(N−k̄−1), a

S
φ(q)

´
(1)

≥ uR
³³
mφ(N−k̄−1), a

S
2

´
,σR2

´
, (2)

Strict inequality holds in line 2 if SR
¡
4k̄
¢
contains a Receiver strategy non-

constant on mφ(N−k̄−1) ∪Mφ(N−k̄−1). In that case, we obtain a contradiction

to the construction of σR2 . If m1 = mφ(N−k̄−1) and b
R
¡
aS1
¢
= aR

φ(N−k̄−1), then¡
m1, a

S
1

¢
and

¡
m̂2, â

S
2

¢
have disjoint constrained message sets, and by lemma 2,

SR
¡
4k̄
¢
contains a Receiver strategy non-constant onmφ(N−k̄−1)∪Mφ(N−k̄−1).

If bR
¡
aS1
¢ 6= aR

φ(N−k̄−1), then there exists
¡
m̂1, â

S
1

¢ ∈ SS ¡4k̄ + 1¢ with m̂1 ∈
Mφ(N−k̄−1) that is related to

¡
m1, a

S
1

¢
in the same way

¡
m̂2, â

S
2

¢
is to

¡
m2, a

S
2

¢
.

The assumption of unclear intention implies that either bR
¡
âS1
¢ 6= bR

¡
âS2
¢
, in

which case we apply lemma 2 and we are done, or bR
¡
âSi
¢ 6= bR ¡aSi ¢ for some
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i = 1, 2. Assume w.l.o.g. that i = 2. But then âS2 6= aS2 , and the construction
that

¡
m2, a

S
2

¢
is a strict best response to σR2 implies that at least one strict

inequality holds in line 1 and 2.

Claim 2 Mφ(N−k̄−2) is intention-clear given S
S
¡
4k̄ + 3

¢
.

Proof. Suppose to the contrary that there exists two Sender strategies¡
m1, a

S
1

¢
and

¡
m2, a

S
2

¢
in SS

¡
4k̄ + 1

¢
with overlapping constrained message

sets where m1,m2 belong to Mφ(N−k̄−2) and b
R
¡
aS1
¢ 6= bR

¡
aS2
¢
. Claim 1

implies that it cannot be the case that m1 and m2 both belong to mφ(N−k̄−1)∪
Mφ(N−k̄−1). Observation 4.1.2 and the definition of constrained message sets
imply that m1 and m2 must belong to the same message bundle inMφ(N−k̄−2).

Denote this message bundle by E. Then from lemma 6, for i = 1, 2, given σRi ∈
∆+SR

¡
4k̄ + 2

¢
to which

¡
mi, a

S
i

¢
is a strict best response w.r.t. S

¡
4k̄ + 2

¢
,

there exists
¡
m̂i, â

S
i

¢ ∈ SS ¡4k̄ + 3¢ where m̂ ∈ mφ(N−k̄−1) ∪Mφ(N−k̄−1) and

χ
³
σRi ,mφ(N−k̄−2) ∪Mφ(N−k̄−2), â

S
i

´
≥ χ

³
σRi ,mφ(N−k̄−2) ∪Mφ(N−k̄−2), a

S
i

´
.

But from claim 1, mφ(N−k̄−1)∪Mφ(N−k̄−1) is intention-clear given S
S
¡
4k̄ + 1

¢
.

Lemma 3 then implies that sR (m̂i) = b
R
¡
âSi
¢
for every sR ∈ SR ¡4k̄ + 2¢ non-

constant on Mφ(N−k̄−2). Therefore,

uS
¡¡
m̂i, â

S
i

¢
,σRi

¢
= χ

³
σRi ,mφ(N−k̄−2) ∪Mφ(N−k̄−2), â

S
i

´
≥ χ

³
σRi ,mφ(N−k̄−2) ∪Mφ(N−k̄−2), a

S
i

´
(3)

≥ uR
¡¡
mi, a

S
i

¢
,σRi

¢
. (4)

There exists j ∈ {1, 2} such that bR ¡âS1 ¢ 6= bR ¡aSj ¢ because bR ¡aS1 ¢ 6= bR ¡aS2 ¢.
Since m̂1 belongs to a message bundle parallel to E, the constrained message set
of
¡
m̂1, â

S
1

¢
is disjoint from that of

¡
mj , a

S
j

¢
. Lemma 2 implies that SR

¡
4k̄ + 2

¢
contains Receiver strategies non-constant on mφ(N−k̄−2) ∪Mφ(N−k̄−2). Hence
inequality 4 holds strictly for both i = 1, 2, contradiction to the construction of
σRi .

4.2 Games with Positive Spillovers

The self-signalling criterion implies that the Sender’s preference over the Re-
ceiver’s actions differ with her own intention. Our language assumption com-
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bined with iterative admissibility connects different messages with different pref-
erences. This then separates one intention from the other and guarantees the
Sender her Stackleberg payoff.
It seems natural then that the Sender cannot convey any information about

her intention through cheap talk if the Sender’s preference over the Receiver’s

actions is invariant with her own intention.
If the stage game is self-committing, then for every aR ∈ AR, bR ¡bS ¡aR¢¢ =

aR. Therefore, AR (1) = AR. It follows that AR (∞) = AR and AS (∞) =
AS (1) that contains bS

¡
AR
¢
.

Theorem 1 If the stage game is self-committing and the Sender’s preference
over the Receiver’s actions is independent of her own action, then for every¡
aS , aR

¢ ∈ A (∞), there exists ¡m,aS¢ ∈ SS (∞) and sR ∈ SR (∞) such that
sR (m) = aR.

Proof. Define M (k) to be the projection of SS (k) onto M . So M (k) is
the set of messages that are used in SS (k).

Claim 3 sR (1) = SRL .

Proof. Given sR ∈ SRL , let σS be a totally mixed Sender strategy in

∆
©¡
m, bS

¡
sR (m)

¢¢
: m ∈Mª .

For every m ∈ M , ¡m, bS ¡sR (m)¢¢ is the only Sender strategy given positive
weight under σS . Therefore, sR is a best response to every pure strategy given
strictly positive weight by σS , and thus is a strict best response to σS . It
follows that sR ∈ SR (1).

Claim 4 SS (1) =M (1)×AS (1).

Proof. Suppose
¡
m̂, âS

¢ ∈ SS (1). Write m̂ = A1...An, and define A0 =
AR. Then for every j = 1, ..., n, there exists āj ∈ Aj and aj ∈ Aj−1\Aj where
gS
¡
âS , āj

¢
> gS

¡
âS , aj

¢
. Otherwise,

¡
m̂, âS

¢
would be weakly dominated by¡

m0, âS
¢
for any m0 ∈M (A1...Aj−1 (Aj−1\Aj)).

Define a partial relation > on AR by the preference order of the Sender.
That is, aR2 > a

R
1 iff g

S
¡
aS , aR2

¢
> gS

¡
aS , aR1

¢
. Define

sR1 (m) =

⎧⎨⎩ ā1
a1

minAR

m ∈M (A1)
m ∈M (Ac1)
otherwise
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and

sRj (m) =

⎧⎪⎪⎨⎪⎪⎩
āj
aj

sRj−1 (m)
minAj−1

m ∈M (A1...Aj−1Aj)
m ∈M (A1...Aj−1 (Aj−1\Aj))

m /∈M (A1...Aj−1)
otherwise

for j = 2, ..., n. It follows that, for j = 1, ..., n, for every aS ,

uS
¡¡
m,aS

¢
, sRj

¢
= gS

¡
aS , āj

¢
> gS

¡
aS , aj

¢
= uS

¡¡
m,aS

¢
, sRj

¢
for every m ∈M (A1...Aj−1 (Aj−1\Aj)) and

uS
¡¡
m̂, aS

¢
, sRj

¢
= gS

¡
aS , āj

¢
> gS

¡
aS ,minAR

¢
= uS

¡¡
m,aS

¢
, sRj

¢
for every m /∈M (A1) ∪M (Ac1). Define

σ̂Rε :=
n−1X
j=1

εj−1 (1− ε) sRj + εn−1sRn .

Therefore,
uS
³¡
m̂, aS

¢
, σ̂Rε

´
> uS

³¡
m,aS

¢
, σ̂Rε

´
for every m 6= m̂, every aS and every ε sufficiently small. Let aR denote also
the constant Receiver strategy that takes the action aR upon receiving every
message. There exists α ∈ ∆AR to which aS is a best response in the stage
game, since aS ∈ AS (1). Let α also denote the Receiver strategy that puts
weights α

¡
aR
¢
on the constant strategy aR. Then for ε sufficiently small,

uS
³¡
m̂, ãS

¢
, (1− ε)α+ εσ̂Rε

´
> uS

¡
m,aS

¢
for every

¡
m,a0S

¢ 6= ¡m̂, aS¢. We have thus established that ¡m̂, aS¢ ∈ SS (1)
for every aS ∈ AS (1).
Since SR (1) = SRL , it is immediate that S

S (∞) = SS (1) and SR (∞) = SRL .
We are done.
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Receiver’s Action
Invest Not

Sender’s Invest 10+x,10+x -90,x
Action Not x,-90 0,0

Table 8: leading example in Baliga Morris (2002)

Receiver’s Action
Invest Not

Sender’s Invest 10+x,10+x -90,x
Action Not x,-90 0,0

Low Cost

Receiver’s Action
Invest Not

Sender’s Invest -10+x,10+x -110,x
Action Not x,-90 0,0

High Cost

Table 9: Incomplete Information Investment Game

4.3 Comparison with Baliga and Morris

To formally formulate the role of the self-signalling criterion, Baliga and Morris
(2002) transforms the complete information game into a coordination game

with incomplete information, and use the solution concept of perfect Bayesian
equilibrium. The counterfactual “what would the Sender have said had she
intended to play action a0 instead of a” does not really have a role in the solution
concept of Nash equilibrium in complete information games. However, the
solution concept of perfect Bayesian equilibrium addresses the question “what
would the Sender have said were she of type t0.?
The easiest way to see the comparison is to look at the leading example in

Baliga and Morris (2002). The game is shown in table 8.
In this stage game, both action Invest and action Not are self-committing.

If x < 0, the stage-game is self-signalling, while the game exhibits positive

spillovers if x > 0. To formally study the role of self-signalling, Baliga and
Morris (2002) study the following incomplete information game where with
probability 1 − p the Sender is of Low Cost and with probability p > 0 the
Sender is of High Cost. The Low Cost type has the same payoff matrix as in
the complete information game of table 8. However, the High Cost Sender has
a dominant strategy to not invest. The Receiver’s payoff depends only on the
action taken by the Sender, not on the Sender’s type. Therefore, the Receiver
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cares about the type of the Sender only insofar as it conveys information about
the action the Sender would take. For example, if the Receiver knew that the
Sender is of High Cost, the Receiver would infer that the Sender would not in-
vest, and thus his best response would be to not invest. Hence, the hypothetical
Sender who intends to not invest is equated with the High Cost Sender who has

a dominant strategy to not invest. Since the prior puts strictly positive weight
on the High Cost type, the strategy of the High Cost type, or equivalently, the
strategy of the hypothetical Sender who intends to not invest, has to be taken
into account by the Receiver.
They show that when x < 0, there exists a perfect Bayesian equilibrium

where the Low Cost Sender sends a different message from the High Cost
Sender and both the Sender and the Receiver invest when the Sender is of
Low Cost, while neither of them invest when the Sender is of High Cost.
However, when x > 0, there can be no perfect Bayesian equilibrium where the

outcomes are type-dependent. Conditional on the Sender being Low Cost type,
when x < 0, there exists an equilibrium where the outcome is (Invest, Invest).
On the other hand, when x > 0, conditional on the Sender being Low Cost

type, the unique equilibrium outcome is (Not,Not) if the probability of the
High Cost type (p) is greater than 1

10 , while the equilibrium outcome could
be either (Invest, Invest) or (Not,Not) if p < 1

10 . Since the stage-game is
self-signalling only when x < 0, this illustrates the role of the self-signalling
criterion.
When x < 0, our approach predicts that the unique outcome is for both to

invest, which coincides with the prediction of Baliga and Morris (2002). When

x > 0, our approach predicts that every action profile is possible. This is natural
because there is not a fixed probability attached to the pessimistic Sender who
is going to not invest, and players may have incorrect belief about each other.
The formal model in Baliga and Morris (2002) is as follows. The Sender

is one of a finite set of possible types T . The Sender’s utility function is
g̃S : AS × AR × T → R; the Receiver’s utility function is gR : AS × AR → R.
For ease of comparison, I rewrite the positive result in Baliga and Morris (2002)
here.

Proposition 2 If (1) for each aS ∈ AS, there exists a type τ
¡
aS
¢ ∈ T such

that aS the dominant strategy for the Sender in the game gS (., t); and (2) for
each action aR ∈ AR, there exists aS ∈ AS such that aR = bR ¡aS¢, then there
exists a full revelation perfect Bayesian equilibrium in the one-sided cheap talk
game if and only if
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1. aS is a self-committing action for the Sender in the game gS
¡
., τ
¡
aS
¢¢
;

2. aS is the Stackelberg action for the Sender in the game gS
¡
., τ
¡
aS
¢¢
;

3. aS is self-signalling for the Sender in the game gS
¡
., τ
¡
aS
¢¢
.

Let’s take the complete information stage game g =
¡
AS , AR, gS , gR

¢
where

AR =
©
bR
¡
aS
¢
: aS ∈ ASª. Let T = AS . For clarity, let τ be the bijective

function from AS to T . Let aS∗ = argmaxaS gS
¡
aS , bR

¡
aS
¢¢
. Then aS∗ is the

Stackleberg action for the Sender in the game G. Define

d̄ := max
(aS,aR)6=(a0S ,a0R)

¯̄
gS
¡
aS , aR

¢− gS ¡a0S , a0R¢¯̄ .
d̄ is thus the maximum payoff difference for the Sender. Expand the util-
ity function gS : AS × AR → R into g̃S : AS × AR × T → R as follows.
g̃S
¡
., τ
¡
aS∗
¢¢
= g (.), and for every aS 6= aS∗ , g̃S

¡
aS , a0R, τ

¡
aS
¢¢
= gS

¡
aS , a0R

¢
for every a0R ∈ AR, and g̃S ¡a0S , a0R, τ ¡aS¢¢ = gS

¡
a0S , a0R

¢ − 2d̄, for every
a0S 6= aS and every a0R ∈ AR. Denote the one-sided cheap talk extension game
of g with language by GL, and the one-sided cheap talk extension game of g̃ by
G̃. Then proposition 2 implies that G̃ has a full revelation prefect Bayesian
equilibrium if and only if the complete information stage game g is self-signalling

and every action aS for the Sender is self-committing. In this equilibrium, the
type τ

¡
aS∗
¢
, whose payoff matrix is g, gets her Stackelberg payoff. Our positive

result equivalently states that if every aS in g is self-committing and g is self-
signalling, the unique iterative admissible outcome in GL gives the Sender her
Stackelberg payoff. The negative result in Baliga and Morris (2002) says that
there is no communication in any equilibrium of G̃ if g exhibits binary action
positive spillovers. Equilibrium outcomes of G̃ in such games depend on the
common prior over T . If there is no common prior, and we allow any prior
over T , we can span every rationalizable outcome. Our negative result relaxes
the condition to any finite games with positive spillovers, and states that every

rationalizable outcome is consistent with iterative admissibility in GL.

5 Conclusion

By modeling the idea that there exists common knowledge of language, we
are able to formally distinguish coordination games with and without the self-
signaling condition first used by Aumann (1990) within the framework of com-
plete information games. We show that, if the stage game is self-committing and
self-signalling, every iterative admissible outcome in the language game achieves
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coordination and gives the Sender her Stackelberg payoff. On the other hand, if
the stage game is self-committing but the Sender’s preference for the Receiver’s
actions does not depend on her intended action, every rationalizable stage game
outcome is also an iteratively admissible outcome in the language game.

6 Appendix

6.1 Proof for lemma 2

Every Receiver best response to

1

2

¡
m1, a

S
1

¢
+
1

2

¡
m2, a

S
1

¢
responds to message mi with bR

¡
aSi
¢
for i = 1, 2, and thus is non-constant on B

since bR
¡
aS1
¢ 6= bR ¡aS2 ¢. At least of of the best responses survive the (j + 1)th

iteration and statement 1 follows.
Given sR ∈ SR (j) non-constant on B, there exists σS ∈ ∆+SS (j − 1) to

which sR is a best response. Then every best response to

1

2
(1− ε)

X
i=1,2

¡
mi, a

S
i

¢
+ εσS |M\E

gives us the desired property in statement 2.

6.2 Proof for lemma 6

We need the following lemma for the proof.

Lemma 7 Let F1, F2, and F3 be three parallel message bundles, and B be the
smallest message bundle that strictly contains F1. If

1.
¡
m1, a

S
1

¢ ∈ SS (j − 1) where
M cstr

¡
m1, b

R
¡
aS1
¢¢ ⊂ F1,

2. SS (j − 1) contains Sender strategies that use messages in F2 and F3 re-
spectively, and

3. SR (j) contains Receiver strategies sR2 and s
R
3 non-constant on B such that

either sR2 |F2 or sR3 |F3 is not equivalent w.r.t. SS (j − 1) for the Receiver
to a constant of bR

¡
aS1
¢
,
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then there exists a mapping ψ : SR (j) → SR (j) that belongs to ΨB such
that for every sR ∈ SR (j) non-constant on B, ψ ¡sR¢ is equal to sRi on Fi for
i = 2, 3, is equal to sR outside of E ∪ F1 ∪ F2, and is a best response to the
Sender strategy

¡
m1, a

S
1

¢
.

Proof. Let σSi be a totally mixed Sender strategy in S
S (j − 1) to which

sRi is a best response, for i = 2, 3. Let σ
S |F̃ denote the mixed Sender strategy

that is the probability distribution of σS conditional on sending messages in F̃ .
Given sR ∈ SR (j) non-constant on B, let σS be a totally mixed Sender strategy
in SS (j − 1) to which sR is a best response. Then for ε sufficiently small, every
Receiver best response to

(1− ε)
¡
m1, a

S
1

¢
+

ε (1− ε)

2
σS2 |F2 +

ε (1− ε)

2
σS3 |F3 + ε2σS |M\(F2∪F3) (5)

responds to message m1 with action bR
¡
aS1
¢
, is equivalent to sRi on Fi w.r.t.

SR (j − 1) for the Receiver, for i = 2, 3, and is equal to sR outside of F1∪F2∪F3.
Condition 3 implies that such a best response must also be non-constant on B.
Since the Sender strategy in expression 5 is totally mixed on SS (j − 1), at least
one best response to expression 5 belongs to SR (j). Define ψ

¡
sR
¢
to be a best

response to expression 5 in SR (j) and we are done.
If l ≤ 2, then Mφ(N−l) consists of only one parallel message bundle, and

lemma 6 holds automatically. Hence we are concerned only with l ≥ 3. It is
easy to see that the statement holds for every l = 3, .., N for k = 1. Suppose the
statement is true for l = 3, .., N and k = 1, ..., k̄. Suppose SS

¡
k̄ + 1

¢
contains

a Sender strategy
¡
m̂, âS

¢
where m̂ belongs to a message bundle E in Mφ(N−l)

and there exists s0R ∈ SR ¡k̄¢ non-constant on mφ(N−l) ∪Mφ(N−l) such that
sRw,(m̂,âS) (m̂) 6= bR

¡
âS
¢
. Let σ̂R be a totally mixed strategy in ∆SR

¡
k̄
¢
to

which
¡
m̂, âS

¢
is a best response. Let Amax denote the set of Sender actions

that maximize
χ
³
σ̂R,mφ(N−l) ∪Mφ(N−l), aS

´
over

n
aSφ(i) : i > N − l

o
. Given any two message bundles F1 and F2 parallel

to E, by assumption, there exist two Sender strategies
¡
m1, a

S
1

¢
,
¡
m2, a

S
2

¢
in

SS
¡
k̄
¢
where message m1 belongs to F1, message m2 belongs to F2, and Sender

actions aS1 and a
S
2 both belong to A

max. It suffices to show that SS
¡
k̄ + 1

¢
contains a Sender strategy

¡
m1∗, aS1∗

¢
where m1∗ ∈ F1 and aS1∗ ∈ Amax. We

would be done if
¡
m1, a

S
1

¢ ∈ SS ¡k̄ + 1¢. Suppose ¡m1, a
S
1

¢
/∈ SS ¡k̄ + 1¢.

Claim 5 Given any
¡
m̃, ãS

¢ ∈ SS ¡k̄¢ where ãS ∈ Amax and m̃ ∈ E ∪ F2,
there exists ψd,(m̃,ãS) : S

R
¡
k̄
¢ → SR

¡
k̄
¢
that belongs to Ψmφ(N−l)∪Mφ(N−l)
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such that for every sR non-constant on mφ(N−l) ∪Mφ(N−l), ψd,(m̃,ãS)
¡
sR
¢
is

equal to sR outside of E ∪ F1 ∪ F2, while ψd,(m̃,ãS)
¡
sR
¢
(m1) = bR

¡
aS1
¢
and

ψd,(m̃,ãS)
¡
sR
¢
(m̃) 6= bR ¡ãS¢.

Proof. Suppose that sR (m̃) = bR
¡
ãS
¢
for every Receiver strategy in SR

¡
k̄
¢

which is non-constant on mφ(N−l) ∪Mφ(N−l), then

uS
³¡
m̃, ãS

¢
, σ̂R

´
= χ

³
σ̂R,mφ(N−l) ∪Mφ(N−l), aS1

´
≥ χ

³
σ̂R,mφ(N−l) ∪Mφ(N−l), âS

´
> uS

³¡
m̂, âS

¢
, σ̂R

´
,

which contradicts the assumption that
¡
m̂, âS

¢
is a best response to σ̂R. There-

fore, there exists sRw,(m̃,ãS) ∈ SR
¡
k̄
¢
non-constant on mφ(N−l) ∪Mφ(N−l) where

sRw,(m̃,ãS) (mj) 6= bR
¡
ãS
¢
. Analogously, there exists sRw,i ∈ SR

¡
k̄
¢
with the

same properties w.r.t.
¡
mi, a

S
i

¢
.

Assume w.l.o.g. that m̃ ∈ E. If either sRw,(m̃,ãS)|E or sRw,(m2,aS2 )
|F2 is not

equivalent to a constant Receiver strategy of bR
¡
aS1
¢
w.r.t. SS

¡
k̄ − 1¢, then we

can apply lemma 7 and we are done. Otherwise, bR
¡
aS2
¢ 6= bR ¡aS1 ¢. Since F1

and F2 are parallel inMφ(N−l), constrained message sets of
¡
mi, a

S
i

¢
are disjoint,

and lemma 2 implies that there exists sR2 ∈ SR
¡
k̄
¢
which is a best response to¡

mi, a
S
i

¢
, for i = 1, 2. It follows that sR2 is non-constant on Mφ(N−l) and sR2 |F2

is not equivalent to a constant of bR
¡
aS1
¢
. We can again apply lemma 7 and

we are done.

Following claim 5, we can then define Td : SR
¡
k̄
¢ → SR

¡
k̄
¢
where Td

¡
sR
¢

puts strictly positive probability on every strategy in the set½
ψd,(m̃,ãS) :

¡
m̃, ãS

¢ ∈ SS ¡k̄ + 1¢
m̃ ∈ E ∪ F2 and ãS ∈ Amax

¾
.

Not that for every sR non-constant on mφ(N−l) ∪ Mφ(N−l), Td
¡
sR
¢
(m1) =

bR
¡
aS1
¢
, Td

¡
sR
¢
is equal to sR outside if E ∪ F1 ∪ F2, and

Td
¡
sR
¢
(m̃) 6= bR ¡ãS¢ if ¡m̃, ãS¢ ∈ SS ¡k̄¢ and m̃ ∈ E ∪ F2. (6)
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Therefore, for every Sender strategy
¡
m,aS

¢
where m /∈ E ∪ F1 ∪ F2,

uS
³¡
m,aS

¢
, Td

³
σ̂R
´´

= uS
³¡
m,aS

¢
, σ̂R

´
≤ uS

³¡
m̂, âS

¢
, σ̂R

´
< χ

³
σ̂R,mφ(N−l) ∪Mφ(N−l), âS

´
≤ χ

³
σ̂R,mφ(N−l) ∪Mφ(N−l), aS1

´
= uS

³¡
m1, a

S
1

¢
, Td

³
σ̂R
´´
.

If m ∈ E ∪ F1 ∪ F2, then
uS
³¡
m,aS

¢
, Td

³
σ̂R
´´

≤ χ
³
σ̂R,mφ(N−l) ∪Mφ(N−l), aS

´
(7)

≤ χ
³
σ̂R,mφ(N−l) ∪Mφ(N−l), aS1

´
(8)

= uS
³¡
m1, a

S
1

¢
, Td

³
σ̂R
´´
.

If aS /∈ Amax, then strictly inequality holds in line 8. If aS ∈ Amax, m ∈ E∪F2,
and

¡
m,aS

¢ ∈ SS ¡k̄¢, then strict inequality holds in line 7 because of inequality
6 and the construction of σ̂R and Td such that Td

³
σ̂R
´
puts positive probability

on Receiver strategies non-constant on mφ(N−l) ∪ Mφ(N−l). If m ∈ F1 but
aS /∈ Amax, then it follows that

uS
³¡
m,aS

¢
, Td

³
σ̂R
´´
< uS

³¡
m1, a

S
1

¢
, Td

³
σ̂R
´´
.

Therefore, if
¡
m∗, aS∗

¢
is a best response in SS

¡
k̄
¢
to Td

³
σ̂R
´
∈ ∆SR ¡k̄¢, it

has to be the case that message m∗ ∈ F1 and Sender action aS∗ ∈ Amax. Since
at least one Sender best response to Td

³
σ̂R
´
survives the

¡
k̄ + 1

¢th
iteration,

we are done.

6.3 Proof for lemma 5

Both statements are true for k = 1, for all N−l 6= q. SinceMφ(N−3) is intention
clear given SS (3), we are concerned only if l ≥ 3. Suppose both statements
are true for every N − l 6= q, for k = 1, ..., k̄. Let

³
mφ(N−l), aSφ(q)

´
be a Sender

strategy that survives the
¡
k̄ + 1

¢th
round of deletion, where bR

³
aSφ(q)

´
= aRφ(q).

Observation 4.1.2 implies that q ≥ N − l. Suppose
³
mφ(N−l), aSφ(q)

´
satisfies

both the Unclear Intention condition and the No Sincere Recommendation con-
dition, . This implies that q 6= N − l.
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Let σRq be a Receiver strategy in ∆S
R
¡
k̄
¢
to which

³
mφ(N−l), aSφ(q)

´
is a

best response w.r.t. S
¡
k̄
¢
. By assumption, there exists

¡
m̂, âS

¢ ∈ SS ¡k̄¢ where
m̂ ∈Mφ(N−l) and

χ
¡
σRq ,mφ(N−l) ∪Mφ(N−l), âS

¢
≥ χ

³
σRq ,mφ(N−l) ∪Mφ(N−l), aSφ(q)

´
,

and there exists σ̂Rq ∈ Ψmφ(N−l)∪Mφ(N−l)
¡
σRq
¢
to which

¡
m̂, âS

¢
is a best response

where sR (m̂) = bR
¡
âS
¢
for every sR non-constant on mφ(N−l) ∪Mφ(N−l) that

receives positive weights under σ̂Rq . If S
R
¡
k̄
¢
contains only Receiver strategies

constant on mφ(N−l) ∪Mφ(N−l), then for σRq totally mixed in ∆S
R
¡
k̄
¢
,

US
¡¡
m̂, âS

¢
,σRq

¢
= χ

¡
σRq ,mφ(N−l) ∪Mφ(N−l), âS

¢
≥ χ

³
σRq ,mφ(N−l) ∪Mφ(N−l), aSφ(q)

´
= US

³³
mφ(N−l), aSφ(q)

´
,σRq

´
.

Thus
¡
m̂, âS

¢
belongs to SS

¡
k̄ + 1

¢
and we are done.

Suppose SR
¡
k̄
¢
contains Receiver strategies non-constant on mφ(N−l) ∪

Mφ(N−l). Then there exists sRw ∈ SR
¡
k̄
¢
non-constant on mφ(N−l) ∪Mφ(N−l)

such that sRw (m̂) 6= bR
¡
âS
¢
. Otherwise, for σRq totally mixed,

US
¡¡
m̂, âS

¢
,σRq

¢
= χ

¡
σRq ,mφ(N−l) ∪Mφ(N−l), âS

¢
≥ χ

³
σRq ,mφ(N−l) ∪Mφ(N−l), aSφ(q)

´
> US

³³
mφ(N−l), aSφ(q)

´
,σRq

´
,

because sR
¡
mφ(N−l)

¢ 6= bR
³
aSφ(q)

´
for every sR non-constant on mφ(N−l) ∪

Mφ(N−l). This contradicts the construction of σRq .
Let E be the message bundle which m̂ belongs to. By lemma 6, there exists¡

m1, a
S
1

¢
,
¡
m2, a

S
2

¢ ∈ SS
¡
k̄
¢
where each mi belongs to a different message

bundle Fi parallel to E,and aSi belongs to

arg max
a0S∈(bR)−1

³
aR
φ(j)

´
for j>N−l

χ
³
σ̂Rq ,mφ(N−l) ∪Mφ(N−l), a0S

´
,
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for i = 1, 2. Therefore, for i = 1, 2,

χ
³
σ̂Rq ,mφ(N−l) ∪Mφ(N−l), aSi

´
≥ χ

³
σ̂Rq ,mφ(N−l) ∪Mφ(N−l), âS

´
= χ

¡
σRq ,mφ(N−l) ∪Mφ(N−l), âS

¢
≥ χ

³
σRq ,mφ(N−l) ∪Mφ(N−l), aSφ(q)

´
.

Similarly, there must exist sRwi ∈ SR
¡
k̄
¢
such that sRwi (mi) 6= bR

¡
aSi
¢
. If

bR
¡
aSi
¢ 6= bR ¡âS¢ for some i ∈ {1, 2}, then we use lemma 2, otherwise, we use

lemma 7 to establish existence of a mapping ψ : SR (k)→ SR (k) that belongs
to Ψmφ(N−l)∪Mφ(N−l) such that ψ

¡
sR
¢
(m̂) = bR

¡
âS
¢
, for every sR ∈ SR (k)

non-constant on mφ(N−l) ∪Mφ(N−l). It follows that

uS
¡¡
m̂, âS

¢
,ψ
¡
σRq
¢¢

= χ
¡
σRq ,mφ(N−l) ∪Mφ(N−l), âS

¢
≥ χ

³
σRq ,mφ(N−l) ∪Mφ(N−l), aSφ(q)

´
> uS

³³
mφ(N−l), aSφ(q)

´
,ψ
³
σ̂R
´´

= uS
³³
mφ(N−l), aSφ(q)

´
, σ̂R

´
(9)

≥ uS
³¡
m,aS

¢
, σ̂R

´
= uS

³¡
m,aS

¢
,ψd

³
σ̂R
´´

for every
¡
m,aS

¢
where m /∈ Mφ(N−l). Equality holds in line 9 because

sR
¡
mφ(N−l)

¢
= aRφ(N−l) for every s

R non-constant on mφ(N−l) ∪ Mφ(N−l).
Therefore, any best response to ψ

¡
σRq
¢
uses a message in Mφ(N−l). Since at

least one of the Sender best responses to ψ
¡
σRq
¢
survives the

¡
k̄ + 1

¢th
iteration,

we are done.
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