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Abstract In this paper, we study optimal control policies for Probabilistic Boolean Networks
(PBNs) with hard constraints. Boolean Networks (BNs) and PBNs are useful and effective tools
for modelling genetic regulatory networks. A PBN is essentially a collection of BNs driven by a
Markov chain process. It is well-known that the control/intervention of a genetic regulatory net-
work is useful for avoiding undesirable states associated with diseases like cancer. Therefore both
optimal finite-horizon control and infinite-horizon control policies have been proposed to achieve
the purpose. Actually the optimal control problem can be formulated as a probabilistic dynamic
programming problem. In many studies, the optimal control problems did not consider the case of
hard constraints, i.e., to include a maximum upper bound for the number of controls that can be ap-
plied to the PBN. The main objective of this paper is to introduce a new formulation for the optimal
finite-horizon control problem with hard constraints. Experimental results are given to demonstrate
the efficiency of our proposed formulation.
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1 Introduction
An important research issue in systems biology is to understand and model the

mechanism in which the cells execute and control a large number of operations for
their normal functions and also the way in which they fail in diseases such as cancer.
A lot of mathematical models have been proposed for the former purpose, such as
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neural networks [19], differential equations [10] and Petri nets [25]. For the cap-
tured problem, modelling the genetic regulatory network and inferring its structure
by real gene expression data, Boolean Network (BN) and its generalization Proba-
bilistic Boolean Network (PBN) have received much attention. This approach helps
one to make efficient and effective predictions of the cellular systems by using com-
puter simulations. BN was first introduced by Kauffman [13]. In a BN, each gene
is regarded as a vertex of the network and is then quantized into two levels only (ex-
press (0) or not-express (1)) though the idea can be extended to the case of more than
two levels. In a BN, the target gene is predicted by several genes through a Boolean
function. The genes used to predict a certain gene are called its input genes. If the
input genes and the Boolean functions are given, then a BN is said to be defined and it
can be considered as a deterministic dynamical system. BN is simple but its dynam-
ics is complex and it is useful in getting insight in the global behavior of a genetic
regulatory network [26]. In a BN, attractors play a very important role. Starting with
a given state, eventually the BN will enter into a cycle of states called an attractor
cycle and will stay there forever [14]. A number of algorithms have been proposed
by Akutsu et al. [3, 4] and Zhang et al. [28] for finding attractors.

However, the biological system has its stochastic nature and the microarray data
sets used to infer the network structure are usually not accurate because of the ex-
perimental noise in the complex measurement process. Thus a deterministic model
may not be able to cope with the real situations. In view of this, Akutsu et al. [2]
proposed a noisy Boolean network together with an identification algorithm. In their
noisy BNs, they relax the requirement of consistency imposed by the Boolean func-
tions. Later Shmulevich et al. [20, 21] proposed a PBN that can take the advantage
of the rule-based properties of BNs and still be able to cope with the presence of un-
certainty. PBNs have been shown to be practical in building a logical representation
of cell cycle regulation, see for instance [20, 21]. The dynamics of a PBN can be
studied in the context of a standard Markov chain [20, 21]. Therefore the theory of
Markov chain process [7] can be applied to analyze the network. It should be noted
that the PBNs in [20, 21] are called instantaneously random PBNs. It may not have
a unique steady-state probability distribution. To stabilize the network, later random
gene perturbations were introduced to the network in [22]. With the random gene
perturbation, the system becomes stable in the long-run and has the unique network
steady-state probability distribution. Another extension of the instantaneously ran-
dom PBN is the context-sensitive PBN [16]. The extra feature in a context-sensitive
PBN is that at each time step the BN will be changed with a certain probability. In the
computation of the network steady-state probability distribution, the computational
cost increases exponentially with respect to the number of genes in the network. To
tackle the high dimensionality problem, a multivariate Markov chain model has been
developed to approximate a PBN [6]. Other efficient numerical methods such as
Markov chain Monte-Carlo (MCMC) method [24], matrix method [27] and approx-
imation method [8] have also been proposed for the computation of the steady-state
probability distribution of a PBN.
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While the mechanism of a genetic network can be studied and understood by
using a PBN, it is an ultimate goal of the systems biologists to design therapy and
strategy for the intervention of the network dynamics, in particular, in the case of dis-
eases like cancer. We note that although a PBN allows uncertainty in the inter-gene
relations, actually it evolves according to some fixed state transition probabilities.
Therefore there is no internal control to drive this evolution to some desirable states
or to avoid some undesirable states. Genetic intervention has been proposed to fa-
cilitate a PBN to evolve to some targeted desirable state. Shmulevich et al. [22, 23]
have studied two approaches for genetic intervention. In the first approach, they in-
fluence the network by toggling the state of a particular gene from on to off [22].
But this approach can only affect the behavior of the system for a while as the sys-
tem dynamics still depends on the network itself. Another approach is to apply the
structural intervention to change the network steady state [23]. But still this approach
constitutes only transient intervention. To achieve relatively more permanent effect
of intervention, optimal control theory (finite-horizon and infinite-horizon) finds its
application. In [9], an optimal control formulation for gene intervention problem has
been formulated as a minimization problem with some costs. The costs are defined as
the cost of applying the control inputs in some particular states. Of course relatively
higher terminal costs are assigned to those undesirable states. But the costs have to
be decided by the biologists or clinicians and can be subjective. Since the system
is stochastic in nature, the cost is given by its expectation. Thus the optimal control
policy is the one which minimizes the overall expected cost and is obtained by using
the theory of probabilistic dynamic programming [17]. Here we would like to remark
that the number of possible states in the network increases exponentially with respect
to the number of genes n and therefore the computational cost for solving the optimal
control problem can be enormous even for moderate n. Take for example of a BN,
it has been shown that finding a control strategy for BN to the desired global state
is NP-hard [4]. Therefore the problem of solving optimal control in a PBN is chal-
lenging and approximate methods should be considered. Recently an approximate
finite-horizon optimal control has been introduced in [15] and a heuristic method
based on Q-learning algorithm for approximating the optimal infinite-horizon con-
trol policy has been proposed in [12]. However, all the optimal control formulations
did not consider the case of hard constraints [1], i.e., to include a maximum upper
bound for the number of controls that can be applied to the PBN. Here we will in-
troduce a new formulation for the optimal finite-horizon control problem with hard
constraints [5]. The new formulation can be applied to both perturbed and context-
sensitive PBNs though we only discuss examples of instantaneously random PBNs.
On one hand, during the treatment of one patient, the cost of the operation conducted
may be expensive. On the other hand, it may be impractical to apply many operations
to the patient due to the organism quality of their body, as in chemotherapy. Apart
from the hard constraints, the followings are two more features of our optimal con-
trol model. First, our formulation does not need to define any control cost or terminal
cost. The only constraint is the maximum number of controls that one can apply to
the network. Second, the control policy is not state dependent. However, we remark
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that our formulation here can be modified to include both the control costs and the
state dependent control policies.

The paper is organized in the following sequel. In Section two, we give a prob-
abilistic dynamic programming formulation for our optimal finite-horizon control
problem. In Section three, numerical examples are given to demonstrate the effi-
ciency of our proposed optimal control formulation. Finally, concluding remarks are
given to address further research issues in Section four.

2 The Optimal Finite-Horizon Control Problem
In this section, we give a mathematical formulation for the optimal control prob-

lem based on the principle of dynamic programming. Here the problem can be con-
sidered as a discrete time control problem. Beginning with an initial probability
distribution v0 the PBN (or the Markov chain) evolves according to two possible
transition probability matrices P0 and P1. Without any external control, we assume
that the PBN evolves according to a fixed transition probability matrix P0. When
a control is applied to the network, the PBN will then evolve according to another
transition probability matrix P1 (with more favorable steady states or a BN) but it
will return back to P0 again when no more control is applied to the network. We
remark that one can have more than one type of control, i.e., more than one transition
probability matrix P1 to choose in each time step. But for simplicity of discussion,
we assume that there is only one possible control here. We then suppose that the
maximum number of controls that can be applied to the network during the finite
investigation period T (finite-horizon) is K where K ≤ T and which can be deter-
mined under the guidance of a doctor or a biologist. The objective here is to find an
optimal control policy such that state of the network is close to a target state vector
z. The vector z can be an unit vector (a desirable state) or a probability distribution
(a weighted average of desirable states). To facilitate our discussion, we first de-
fine the following state probability distribution vectors v(ikik−1 . . . i1) = Pik · · ·Pi1 v0 to
represent all the possible network state probability distribution vectors up to time k.
Here i1, . . . , ik ∈ {0,1} and ∑k

j=1 i j ≤ K and ikik−1 . . . i1 is a Boolean string of size
k. We then define U(k) = {v(ikik−1 . . . i1) : i1, . . . , ik ∈ {0,1} and ∑k

j=1 i j ≤ K}
to be the set containing all the possible state probability vectors up to time k. We
note that one can conduct a forward calculation to compute all the state vectors
in the sets U(1),U(2), . . . ,U(T ) recursively. Beginning with v0, we have v(0) =
P0v0 and v(1) = P1v0 and therefore U(1) = {v(0),v(1)}= {P0v0,P1v0}. We then
compute v(00) = P0v(0), v(10) = P1v(0), v(01) = P0v(1), v(11) = P1v(1) and we
have U(2) = {v(00),v(01),v(10),v(11)} = {P0P0v0,P1P0v0,P0P1v0,P1P1v0} Recur-
sively one can compute U(3), . . . ,U(T ). Here the main computational cost is the
matrix-vector multiplication and the cost is O(22n) where n is the number of genes in
the network. However, we don’t need to compute and store all the 2T vectors as some
state probability distribution actually does not exist because the maximum number of
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controls is K. In fact, the total number of vectors involved is

K

∑
j=0

T !
j!(T − j)!

.

For example if K = 1, the complexity of the above algorithm is O(T 22n).
There are at least two possible formulations for our optimal control problem.

The first one is to minimize the terminal distance with the target vector z, i.e.,

min
v(iT iT−1...i1)∈U(T )

||v(iT iT−1 . . . i1)− z||2. (1)

The second one is to minimize the overall average of the distances of the state vectors
v(it . . . i1) (t = 1,2, . . . ,T ) to the target vector z, i.e.,

min
v(iT iT−1...i1)∈U(T )

1
T

T

∑
t=1
||v(it . . . i1)− z||2. (2)

For the first optimal control problem (1), once we compute all the feasible state
vectors U(T ), we can then compute the minimum of the following:
min{||v(iT iT−1 . . . i1)− z||2}. The optimal control policy can be found accordingly.
For the second optimal control formulation (2), we have to define the following cost
function D(v(wt), t,k), 1 ≤ t ≤ T, 0 ≤ k ≤ K as the minimum total distance to the
terminal time T when beginning with state distribution vector v(wt) at time t and that
the number of controls used is k. Here wt is a Boolean string of length t. To reduce
the duplication in the calculation of distances, we consider the following dynamic
programming formulation ([1]):

D(v(wt−1), t−1,k) = min{||v(0wt−1)− z||2 +D(v(0wt−1), t,k),
||v(1wt−1)− z||2 +D(v(1wt−1), t,k +1)}. (3)

Here 0wt−1 and 1wt−1 are Boolean strings of size t. The first term in the right-
hand-side of (3) is the cost (distance) when no control is applied at time t while the
second term is the cost when a control is applied. The optimal control policy can be
obtained during the process of solving (3). To solve our optimal control problem:
min0≤k≤K{D(v0,0,k)} we need the following boundary conditions: D(v(wt), t,K +
1) = ∞ for all wt and t and for k = 0,1, . . . ,K,

D(v(wT ),T,k) = ||v(wT )− z||2 for wT = iT . . . i1 and
T

∑
j=1

i j ≤ K.

Finally, we remark that the formulations are still valid when ||.||2 is replaced by other
vector norms such as ||.||1 or ||.||∞.
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Table 1: The example of eight-gene network (objective function (1) is used)
K 1 2 3 4 5

Control time point (7) (9,11) (7,9,11) (3,7,9,11) (2,5,7,9,11)
Optimal value 0.1585 0.1454 0.1309 0.1297 0.1272

Table 2: The example of eight-gene network (objective function (2) is used)
K 1 2 3 4 5

Control time point (1) (1,2) (1,2,3) (1,2,3,4) (1,2,3,4,5)
Optimal value 0.1459 0.1327 0.1194 0.1061 0.0929

3 Experimental Results
In this section, we apply the optimal control to a eight-gene network [15]. We

assume that there are two Boolean functions f (i)
1 and f (i)

2 associated with each gene i.
Moreover, all the Boolean functions and their variables are generated randomly as in
[15]. Here we assume the control when applied to the network will suppress gene 1,
i.e., gene 1 is not expressed. We further assume that the transition probability matrix
when a control is applied is given by

P1 =
(

0 0
I I

)

where 0 and I are the 27-by-27 zero matrix and the identity matrix respectively.
In the numerical experiment, we assume that the initial state vector of the net-

work is the uniform distribution vector v0 = 1
28 (1,1, . . . ,1)T . The target vector is

z = 1
27 (0,1)T where 0 and 1 are the 1× 27 zero vector and the 1× 27 vector of all

ones respectively. Again we assume that the total time T to be 12 and we try several
different maximum number of controls K = 1,2,3,4,5. Tables I and II report the
numerical results. It took 10.7 seconds to generate the transition probability matrix
P0. The computational time for solving for optimal policy in all cases is less then 4
seconds. In Tables I and II, we observed that we should apply as many controls as
possible up to the maximum constraints for both formulations (1) and (2). Accord-
ing to the formulation (2), the controls should be conducted as soon as possible (the
optimal policy is to apply the controls at the beginning of the period).

4 Concluding Remarks
In this paper, we introduce a new optimal finite-horizon control formulation for

PBNs with hard constraints. The new formulation can be applied to both perturbed
and context-sensitive PBNs though we only test it with the instantaneously random
PBNs. We remark again that our proposed optimal control method can be extended
easily to the case of more than two control policies. The followings are our future
research issues. First, we will extend our formulation for PBNs to the case of optimal
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infinite-horizon control based on the results in [1, 5]. Second, we will extend the
approximation method in [8] to our control problem. Finally, we will conduct more
numerical experiments to bigger size networks.
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