File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Ride-sharing with travel time uncertainty

TitleRide-sharing with travel time uncertainty
Authors
KeywordsRide-sharing
Travel time uncertainty
Generalized trip cost
Feasible match
Issue Date2018
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/trb
Citation
Transportation Research Part B: Methodological, 2018, v. 118, p. 143-171 How to Cite?
AbstractTravel time uncertainty has significant effects on travel reliability and travelers’ generalized trip cost. However, travel time uncertainty has not been considered in existing ride-sharing models, leading to an inaccurate estimation of the benefit from ride-sharing and irrational ride-sharing matches. To fill in the gap, this paper proposes a stochastic ride-sharing model, in which travel time is assumed to be stochastic and follow a time-independent general distribution that has a positive lower bound. Due to travel time uncertainty, travelers may not arrive at their destinations on time. Different from the traditional models taking time windows as hard constraints, the proposed ride-sharing system only requires each participant announcing a role and the desired arrival time window. In the model, the generalized trip cost consists of the cost of driving a vehicle, the cost of travel time, and the cost of schedule delay early and late. This study investigates the effect of the unit variable cost of driving, travelers’ values of time (VOTs), and travel time uncertainty on the cost saving of ride-sharing trips compared to driving-alone trips. A bi-objective ride-sharing matching model is proposed to maximize both the total generalized trip cost saving and the number of matches. The proposed ride-sharing model is further extended to consider time-dependent travel time uncertainty, and the Monte Carlo simulation (MCS) method is developed to evaluate the mean generalized trip cost. Finally, numerical examples are provided to illustrate the properties of the two proposed models. The results show that the unit variable cost of driving, travelers’ VOTs, travel time uncertainty, and the selection of the weight in the objective function have significant impacts on the performance of the proposed ride-sharing system with travel time uncertainty. The results also show that a feasible ride-sharing match based on deterministic travel time can become infeasible in a stochastic ride-sharing system. It is therefore important to consider travel time uncertainty when determining the matches.
Persistent Identifierhttp://hdl.handle.net/10722/275701
ISSN
2021 Impact Factor: 7.632
2020 SCImago Journal Rankings: 3.150
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLong, J-
dc.contributor.authorTan, W-
dc.contributor.authorSzeto, WY-
dc.contributor.authorLi, Y-
dc.date.accessioned2019-09-10T02:47:55Z-
dc.date.available2019-09-10T02:47:55Z-
dc.date.issued2018-
dc.identifier.citationTransportation Research Part B: Methodological, 2018, v. 118, p. 143-171-
dc.identifier.issn0191-2615-
dc.identifier.urihttp://hdl.handle.net/10722/275701-
dc.description.abstractTravel time uncertainty has significant effects on travel reliability and travelers’ generalized trip cost. However, travel time uncertainty has not been considered in existing ride-sharing models, leading to an inaccurate estimation of the benefit from ride-sharing and irrational ride-sharing matches. To fill in the gap, this paper proposes a stochastic ride-sharing model, in which travel time is assumed to be stochastic and follow a time-independent general distribution that has a positive lower bound. Due to travel time uncertainty, travelers may not arrive at their destinations on time. Different from the traditional models taking time windows as hard constraints, the proposed ride-sharing system only requires each participant announcing a role and the desired arrival time window. In the model, the generalized trip cost consists of the cost of driving a vehicle, the cost of travel time, and the cost of schedule delay early and late. This study investigates the effect of the unit variable cost of driving, travelers’ values of time (VOTs), and travel time uncertainty on the cost saving of ride-sharing trips compared to driving-alone trips. A bi-objective ride-sharing matching model is proposed to maximize both the total generalized trip cost saving and the number of matches. The proposed ride-sharing model is further extended to consider time-dependent travel time uncertainty, and the Monte Carlo simulation (MCS) method is developed to evaluate the mean generalized trip cost. Finally, numerical examples are provided to illustrate the properties of the two proposed models. The results show that the unit variable cost of driving, travelers’ VOTs, travel time uncertainty, and the selection of the weight in the objective function have significant impacts on the performance of the proposed ride-sharing system with travel time uncertainty. The results also show that a feasible ride-sharing match based on deterministic travel time can become infeasible in a stochastic ride-sharing system. It is therefore important to consider travel time uncertainty when determining the matches.-
dc.languageeng-
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/trb-
dc.relation.ispartofTransportation Research Part B: Methodological-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectRide-sharing-
dc.subjectTravel time uncertainty-
dc.subjectGeneralized trip cost-
dc.subjectFeasible match-
dc.titleRide-sharing with travel time uncertainty-
dc.typeArticle-
dc.identifier.emailSzeto, WY: ceszeto@hku.hk-
dc.identifier.authoritySzeto, WY=rp01377-
dc.description.naturepostprint-
dc.identifier.doi10.1016/j.trb.2018.10.004-
dc.identifier.scopuseid_2-s2.0-85055718620-
dc.identifier.hkuros303133-
dc.identifier.volume118-
dc.identifier.spage143-
dc.identifier.epage171-
dc.identifier.isiWOS:000454467600007-
dc.publisher.placeUnited Kingdom-
dc.identifier.issnl0191-2615-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats