File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Passive Particle Jamming and Its Stiffening of Soft Robotic Grippers

TitlePassive Particle Jamming and Its Stiffening of Soft Robotic Grippers
Authors
KeywordsParticle jamming
passive jamming
soft gripper
soft robot
variable stiffness gripper
Issue Date2017
PublisherIEEE.
Citation
IEEE Transactions on Robotics, 2017, v. 33 n. 2, p. 446-455 How to Cite?
AbstractThe compliance of soft grippers contributes to their great superiority over rigid grippers in grasping irregularly shaped objects and forming soft contact with environments. Due to a relatively small pressure, soft grippers lack the stiffness required for wider applications. Particle jamming has been frequently reported as a means of stiffness control. Unlike previous research using vacuum for particle jamming, this paper proposes a novel passive particle jamming principle that does not need any vacuum power or other control means. The proposed method is by simply patching a silicone rubber soft actuator and a pack (made of strain-limiting membrane) of particles to form an integral gripping finger. The inflation of the soft actuator applies a pressure to the particle pack causing particles inside it to jam. A larger squeezing pressure will result in tighter particle jamming, thus increasing the stiffness of the finger. The stiffness of the finger is controllable as it is proportional to the actuator's air pressure, which has been verified by experiments in this research. The stiffness can increase more than six fold when air pressure changes from 20 to 80 kPa in the experimental studies. The reported discovery may enhance the capabilities of soft robotic grippers so that more robotic picking operations could be performed by soft grippers. © 2004-2012 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/273913
ISSN
2017 Impact Factor: 4.264
2015 SCImago Journal Rankings: 2.884
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLi, Y-
dc.contributor.authorChen, YH-
dc.contributor.authorYang, Y-
dc.contributor.authorWei, Y-
dc.date.accessioned2019-08-18T14:51:12Z-
dc.date.available2019-08-18T14:51:12Z-
dc.date.issued2017-
dc.identifier.citationIEEE Transactions on Robotics, 2017, v. 33 n. 2, p. 446-455-
dc.identifier.issn1552-3098-
dc.identifier.urihttp://hdl.handle.net/10722/273913-
dc.description.abstractThe compliance of soft grippers contributes to their great superiority over rigid grippers in grasping irregularly shaped objects and forming soft contact with environments. Due to a relatively small pressure, soft grippers lack the stiffness required for wider applications. Particle jamming has been frequently reported as a means of stiffness control. Unlike previous research using vacuum for particle jamming, this paper proposes a novel passive particle jamming principle that does not need any vacuum power or other control means. The proposed method is by simply patching a silicone rubber soft actuator and a pack (made of strain-limiting membrane) of particles to form an integral gripping finger. The inflation of the soft actuator applies a pressure to the particle pack causing particles inside it to jam. A larger squeezing pressure will result in tighter particle jamming, thus increasing the stiffness of the finger. The stiffness of the finger is controllable as it is proportional to the actuator's air pressure, which has been verified by experiments in this research. The stiffness can increase more than six fold when air pressure changes from 20 to 80 kPa in the experimental studies. The reported discovery may enhance the capabilities of soft robotic grippers so that more robotic picking operations could be performed by soft grippers. © 2004-2012 IEEE.-
dc.languageeng-
dc.publisherIEEE.-
dc.relation.ispartofIEEE Transactions on Robotics-
dc.rightsIEEE Transactions on Robotics. Copyright © IEEE.-
dc.rights©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.subjectParticle jamming-
dc.subjectpassive jamming-
dc.subjectsoft gripper-
dc.subjectsoft robot-
dc.subjectvariable stiffness gripper-
dc.titlePassive Particle Jamming and Its Stiffening of Soft Robotic Grippers-
dc.typeArticle-
dc.identifier.emailChen, YH: yhchen@hkucc.hku.hk-
dc.identifier.authorityChen, YH=rp00099-
dc.identifier.doi10.1109/TRO.2016.2636899-
dc.identifier.scopuseid_2-s2.0-85009861452-
dc.identifier.hkuros301949-
dc.identifier.volume33-
dc.identifier.issue2-
dc.identifier.spage446-
dc.identifier.epage455-
dc.identifier.isiWOS:000399348900014-
dc.publisher.placeUnited States-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats