File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Potent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes derived from pluripotent stem cells for treatment of heart failure

TitlePotent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes derived from pluripotent stem cells for treatment of heart failure
Authors
KeywordsCardiomyocytes
Heart failure
Mesenchymal stem cell
Pluripotent stem cells
Issue Date2019
PublisherBioMed Central Ltd. The Journal's web site is located at http://www.stemcellres.com
Citation
Stem Cell Research & Therapy, 2019, v. 10, article no. 78, p. 1-13 How to Cite?
AbstractBackground: Optimal cell type as cell-based therapies for heart failure (HF) remains unclear. We sought to compare the safety and efficacy of direct intramyocardial transplantation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) in a porcine model of HF. Methods: Eight weeks after induction of HF with myocardial infarction (MI) and rapid pacing, animals with impaired left ventricular ejection fraction (LVEF) were randomly assigned to receive direct intramyocardial injection of saline (MI group), 2 × 108 hESC-CMs (hESC-CM group), or 2 × 108 hiPSC-MSCs (hiPSC-MSC group). The hearts were harvested for immunohistochemical evaluation after serial echocardiography and hemodynamic evaluation and ventricular tachyarrhythmia (VT) induction by in vivo programmed electrical stimulation. Results: At 8 weeks post-transplantation, LVEF, left ventricular maximal positive pressure derivative, and end systolic pressure-volume relationship were significantly higher in the hiPSC-MSC group but not in the hESC-CM group compared with the MI group. The incidence of early spontaneous ventricular tachyarrhythmia (VT) episodes was higher in the hESC-CM group but the incidence of inducible VT was similar among the different groups. Histological examination showed no tumor formation but hiPSC-MSCs exhibited a stronger survival capacity by activating regulatory T cells and reducing the inflammatory cells. In vitro study showed that hiPSC-MSCs were insensitive to pro-inflammatory interferon-gamma-induced human leukocyte antigen class II expression compared with hESC-CMs. Moreover, hiPSC-MSCs also significantly enhanced angiogenesis compared with other groups via increasing expression of distinct angiogenic factors. Conclusions: Our results demonstrate that transplantation of hiPSC-MSCs is safe and does not increase proarrhythmia or tumor formation and superior to hESC-CMs for the improvement of cardiac function in HF. This is due to their immunomodulation that improves in vivo survival and enhanced angiogenesis via paracrine effects.
Persistent Identifierhttp://hdl.handle.net/10722/269549
ISSN
2017 Impact Factor: 4.963
2015 SCImago Journal Rankings: 1.405
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLiao, S-
dc.contributor.authorZhang, Y-
dc.contributor.authorTing, S-
dc.contributor.authorZhen, Z-
dc.contributor.authorLuo, F-
dc.contributor.authorZhu, Z-
dc.contributor.authorJiang, Y-
dc.contributor.authorSun, S-
dc.contributor.authorLai, KWH-
dc.contributor.authorLian, Q-
dc.contributor.authorTse, HF-
dc.date.accessioned2019-04-24T08:09:57Z-
dc.date.available2019-04-24T08:09:57Z-
dc.date.issued2019-
dc.identifier.citationStem Cell Research & Therapy, 2019, v. 10, article no. 78, p. 1-13-
dc.identifier.issn1757-6512-
dc.identifier.urihttp://hdl.handle.net/10722/269549-
dc.description.abstractBackground: Optimal cell type as cell-based therapies for heart failure (HF) remains unclear. We sought to compare the safety and efficacy of direct intramyocardial transplantation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) in a porcine model of HF. Methods: Eight weeks after induction of HF with myocardial infarction (MI) and rapid pacing, animals with impaired left ventricular ejection fraction (LVEF) were randomly assigned to receive direct intramyocardial injection of saline (MI group), 2 × 108 hESC-CMs (hESC-CM group), or 2 × 108 hiPSC-MSCs (hiPSC-MSC group). The hearts were harvested for immunohistochemical evaluation after serial echocardiography and hemodynamic evaluation and ventricular tachyarrhythmia (VT) induction by in vivo programmed electrical stimulation. Results: At 8 weeks post-transplantation, LVEF, left ventricular maximal positive pressure derivative, and end systolic pressure-volume relationship were significantly higher in the hiPSC-MSC group but not in the hESC-CM group compared with the MI group. The incidence of early spontaneous ventricular tachyarrhythmia (VT) episodes was higher in the hESC-CM group but the incidence of inducible VT was similar among the different groups. Histological examination showed no tumor formation but hiPSC-MSCs exhibited a stronger survival capacity by activating regulatory T cells and reducing the inflammatory cells. In vitro study showed that hiPSC-MSCs were insensitive to pro-inflammatory interferon-gamma-induced human leukocyte antigen class II expression compared with hESC-CMs. Moreover, hiPSC-MSCs also significantly enhanced angiogenesis compared with other groups via increasing expression of distinct angiogenic factors. Conclusions: Our results demonstrate that transplantation of hiPSC-MSCs is safe and does not increase proarrhythmia or tumor formation and superior to hESC-CMs for the improvement of cardiac function in HF. This is due to their immunomodulation that improves in vivo survival and enhanced angiogenesis via paracrine effects.-
dc.languageeng-
dc.publisherBioMed Central Ltd. The Journal's web site is located at http://www.stemcellres.com-
dc.relation.ispartofStem Cell Research & Therapy-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectCardiomyocytes-
dc.subjectHeart failure-
dc.subjectMesenchymal stem cell-
dc.subjectPluripotent stem cells-
dc.titlePotent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes derived from pluripotent stem cells for treatment of heart failure-
dc.typeArticle-
dc.identifier.emailLiao, S: lsy923@hku.hk-
dc.identifier.emailZhang, Y: zhangyuelin1999@163.com-
dc.identifier.emailLai, KWH: kwhlai@hku.hk-
dc.identifier.emailLian, Q: qzlian@hkucc.hku.hk-
dc.identifier.emailTse, HF: hftse@hkucc.hku.hk-
dc.identifier.authorityLiao, S=rp02244-
dc.identifier.authorityLian, Q=rp00267-
dc.identifier.authorityTse, HF=rp00428-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1186/s13287-019-1183-3-
dc.identifier.pmid30845990-
dc.identifier.pmcidPMC6407247-
dc.identifier.scopuseid_2-s2.0-85062622839-
dc.identifier.hkuros297522-
dc.identifier.volume10-
dc.identifier.spagearticle no. 78, p. 1-
dc.identifier.epagearticle no. 78, p. 13-
dc.identifier.isiWOS:000460811700002-
dc.publisher.placeUnited Kingdom-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats