File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: GEFs and Rac GTPases control directional specificity of neurite extension along the anterior-posterior axis

TitleGEFs and Rac GTPases control directional specificity of neurite extension along the anterior-posterior axis
Authors
KeywordsGuanine nucleotide exchange factors
Rac GTPases
Neurite growth
Issue Date2016
Citation
Proceedings of the National Academy of Sciences of the United States of America, 2016, v. 113, n. 25, p. 6973-6978 How to Cite?
Abstract© 2016, National Academy of Sciences. All rights reserved. Although previous studies have identified many extracellular guidance molecules and intracellular signaling proteins that regulate axonal outgrowth and extension, most were conducted in the context of unidirectional neurite growth, in which the guidance cues either attract or repel growth cones. Very few studies addressed how intracellular signaling molecules differentially specify bidirectional outgrowth. Here, using the bipolar PLM neurons in Caenorhabditis elegans, we show that the guanine nucleotide exchange factors (GEFs) UNC-73/Trio and TIAM-1 promote anterior and posterior neurite extension, respectively. The Rac subfamily GTPases act downstream of the GEFs; CED-10/Rac1 is activated by TIAM-1, whereas CED-10 and MIG-2/RhoG act redundantly downstream of UNC-73. Moreover, these two pathways antagonize each other and thus regulate the directional bias of neuritogenesis. Our study suggests that directional specificity of neurite extension is conferred through the intracellular activation of distinct GEFs and Rac GTPases.
Persistent Identifierhttp://hdl.handle.net/10722/265694
ISSN
2021 Impact Factor: 12.779
2020 SCImago Journal Rankings: 5.011
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorZheng, Chaogu-
dc.contributor.authorDiaz-Cuadros, Margarete-
dc.contributor.authorChalfie, Martin-
dc.date.accessioned2018-12-03T01:21:25Z-
dc.date.available2018-12-03T01:21:25Z-
dc.date.issued2016-
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America, 2016, v. 113, n. 25, p. 6973-6978-
dc.identifier.issn0027-8424-
dc.identifier.urihttp://hdl.handle.net/10722/265694-
dc.description.abstract© 2016, National Academy of Sciences. All rights reserved. Although previous studies have identified many extracellular guidance molecules and intracellular signaling proteins that regulate axonal outgrowth and extension, most were conducted in the context of unidirectional neurite growth, in which the guidance cues either attract or repel growth cones. Very few studies addressed how intracellular signaling molecules differentially specify bidirectional outgrowth. Here, using the bipolar PLM neurons in Caenorhabditis elegans, we show that the guanine nucleotide exchange factors (GEFs) UNC-73/Trio and TIAM-1 promote anterior and posterior neurite extension, respectively. The Rac subfamily GTPases act downstream of the GEFs; CED-10/Rac1 is activated by TIAM-1, whereas CED-10 and MIG-2/RhoG act redundantly downstream of UNC-73. Moreover, these two pathways antagonize each other and thus regulate the directional bias of neuritogenesis. Our study suggests that directional specificity of neurite extension is conferred through the intracellular activation of distinct GEFs and Rac GTPases.-
dc.languageeng-
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of America-
dc.subjectGuanine nucleotide exchange factors-
dc.subjectRac GTPases-
dc.subjectNeurite growth-
dc.titleGEFs and Rac GTPases control directional specificity of neurite extension along the anterior-posterior axis-
dc.typeArticle-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1073/pnas.1607179113-
dc.identifier.pmid27274054-
dc.identifier.scopuseid_2-s2.0-84975799342-
dc.identifier.volume113-
dc.identifier.issue25-
dc.identifier.spage6973-
dc.identifier.epage6978-
dc.identifier.eissn1091-6490-
dc.identifier.isiWOS:000378272400053-
dc.identifier.issnl0027-8424-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats