File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A hybrid evolutionary algorithm with adaptive multi-population strategy for multi-objective optimization problems

TitleA hybrid evolutionary algorithm with adaptive multi-population strategy for multi-objective optimization problems
Authors
Issue Date2017
Citation
Soft Computing, 2017, v. 21, p. 5975-5987 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/254691

 

DC FieldValueLanguage
dc.contributor.authorWang, H-
dc.contributor.authorFu, Y-
dc.contributor.authorHuang, M-
dc.contributor.authorHuang, GQ-
dc.contributor.authorWang, J-
dc.date.accessioned2018-06-21T01:04:58Z-
dc.date.available2018-06-21T01:04:58Z-
dc.date.issued2017-
dc.identifier.citationSoft Computing, 2017, v. 21, p. 5975-5987-
dc.identifier.urihttp://hdl.handle.net/10722/254691-
dc.languageeng-
dc.relation.ispartofSoft Computing-
dc.titleA hybrid evolutionary algorithm with adaptive multi-population strategy for multi-objective optimization problems-
dc.typeArticle-
dc.identifier.emailHuang, GQ: gqhuang@hku.hk-
dc.identifier.emailWang, J: jwwang@hku.hk-
dc.identifier.authorityHuang, GQ=rp00118-
dc.identifier.authorityWang, J=rp01888-
dc.identifier.doi10.1007/s00500-016-2414-5-
dc.identifier.hkuros285240-
dc.identifier.volume21-
dc.identifier.spage5975-
dc.identifier.epage5987-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats