File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A higher order Bayesian decision theory of consciousness

TitleA higher order Bayesian decision theory of consciousness
Authors
KeywordsBayesian
signal detection
consciousness
fMRI
Issue Date2007
Citation
Progress in Brain Research, 2007, v. 168, p. 35-48 How to Cite?
AbstractIt is usually taken as given that consciousness involves superior or more elaborate forms of information processing. Contemporary models equate consciousness with global processing, system complexity, or depth or stability of computation. This is in stark contrast with the powerful philosophical intuition that being conscious is more than just having the ability to compute. I argue that it is also incompatible with current empirical findings. I present a model that is free from the strong assumption that consciousness predicts superior performance. The model is based on Bayesian decision theory, of which signal detection theory is a special case. It reflects the fact that the capacity for perceptual decisions is fundamentally limited by the presence and amount of noise in the system. To optimize performance, one therefore needs to set decision criteria that are based on the behaviour, i.e. the probability distributions, of the internal signals. One important realization is that the knowledge of how our internal signals behave statistically has to be learned over time. Essentially, we are doing statistics on our own brain. This 'higher-order' learning, however, may err, and this impairs our ability to set and maintain optimal criteria for perceptual decisions, which I argue is central to perception consciousness. I outline three possibilities of how conscious perception might be affected by failures of 'higher-order' representation. These all imply that one can have a dissociation between consciousness and performance. This model readily explains blindsight and hallucinations in formal terms, and is beginning to receive direct empirical support. I end by discussing some philosophical implications of the model. © 2008 Elsevier B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/242600
ISSN
2021 Impact Factor: 2.624
2020 SCImago Journal Rankings: 1.229
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLau, Hakwan C.-
dc.date.accessioned2017-08-10T10:51:05Z-
dc.date.available2017-08-10T10:51:05Z-
dc.date.issued2007-
dc.identifier.citationProgress in Brain Research, 2007, v. 168, p. 35-48-
dc.identifier.issn0079-6123-
dc.identifier.urihttp://hdl.handle.net/10722/242600-
dc.description.abstractIt is usually taken as given that consciousness involves superior or more elaborate forms of information processing. Contemporary models equate consciousness with global processing, system complexity, or depth or stability of computation. This is in stark contrast with the powerful philosophical intuition that being conscious is more than just having the ability to compute. I argue that it is also incompatible with current empirical findings. I present a model that is free from the strong assumption that consciousness predicts superior performance. The model is based on Bayesian decision theory, of which signal detection theory is a special case. It reflects the fact that the capacity for perceptual decisions is fundamentally limited by the presence and amount of noise in the system. To optimize performance, one therefore needs to set decision criteria that are based on the behaviour, i.e. the probability distributions, of the internal signals. One important realization is that the knowledge of how our internal signals behave statistically has to be learned over time. Essentially, we are doing statistics on our own brain. This 'higher-order' learning, however, may err, and this impairs our ability to set and maintain optimal criteria for perceptual decisions, which I argue is central to perception consciousness. I outline three possibilities of how conscious perception might be affected by failures of 'higher-order' representation. These all imply that one can have a dissociation between consciousness and performance. This model readily explains blindsight and hallucinations in formal terms, and is beginning to receive direct empirical support. I end by discussing some philosophical implications of the model. © 2008 Elsevier B.V. All rights reserved.-
dc.languageeng-
dc.relation.ispartofProgress in Brain Research-
dc.subjectBayesian-
dc.subjectsignal detection-
dc.subjectconsciousness-
dc.subjectfMRI-
dc.titleA higher order Bayesian decision theory of consciousness-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/S0079-6123(07)68004-2-
dc.identifier.pmid18166384-
dc.identifier.scopuseid_2-s2.0-35848968006-
dc.identifier.volume168-
dc.identifier.spage35-
dc.identifier.epage48-
dc.identifier.isiWOS:000256281100004-
dc.identifier.issnl0079-6123-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats