File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Characteristics of Streptomyces griseus biofilms in continuous flow tubular reactors

TitleCharacteristics of Streptomyces griseus biofilms in continuous flow tubular reactors
Authors
KeywordsAttached growth
Issue Date2014
Citation
FEMS Microbiology Letters, 2014, v. 352, n. 2, p. 157-164 How to Cite?
AbstractThe purpose of this study was to investigate the feasibility of cultivating the biotechnologically important bacterium Streptomyces griseus in single-species and mixed-species biofilms using a tubular biofilm reactor (TBR). Streptomyces griseus biofilm development was found to be cyclical, starting with the initial adhesion and subsequent development of a visible biofilm after 24 h growth, followed by the complete detachment of the biofilm as a single mass, and ending with the re-colonisation of the tube. Fluorescence microscopy revealed that the filamentous structure of the biofilm was lost upon treatment with protease, but not DNase or metaperiodate, indicating that the extracellular polymeric substance is predominantly protein. When the biofilm was cultivated in conjunction with Bacillus amyloliquefaciens, no detachment was observed after 96 h, although once subjected to flow detachment. Electron microscopy confirmed the presence of both bacteria in the biofilm and revealed a network of fimbriae-like structures that were much less apparent in single-species biofilm and are likely to increase mechanical stability when developing in a TBR. This study presents the very first attempt in engineering S. griseus biofilms for continuous bioprocess applications. This is the first study of Streptomyces griseus grown as a biofilm in a tubular bioreactor. Repeated detachment and re-growth was observed, and co-cultivation with Bacillus amyloliquefaciens improved stability. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/228181
ISSN
2021 Impact Factor: 2.820
2020 SCImago Journal Rankings: 0.899
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorWinn, Michael-
dc.contributor.authorCasey, Eoin-
dc.contributor.authorHabimana, Olivier-
dc.contributor.authorMurphy, Cormac D.-
dc.date.accessioned2016-08-01T06:45:23Z-
dc.date.available2016-08-01T06:45:23Z-
dc.date.issued2014-
dc.identifier.citationFEMS Microbiology Letters, 2014, v. 352, n. 2, p. 157-164-
dc.identifier.issn0378-1097-
dc.identifier.urihttp://hdl.handle.net/10722/228181-
dc.description.abstractThe purpose of this study was to investigate the feasibility of cultivating the biotechnologically important bacterium Streptomyces griseus in single-species and mixed-species biofilms using a tubular biofilm reactor (TBR). Streptomyces griseus biofilm development was found to be cyclical, starting with the initial adhesion and subsequent development of a visible biofilm after 24 h growth, followed by the complete detachment of the biofilm as a single mass, and ending with the re-colonisation of the tube. Fluorescence microscopy revealed that the filamentous structure of the biofilm was lost upon treatment with protease, but not DNase or metaperiodate, indicating that the extracellular polymeric substance is predominantly protein. When the biofilm was cultivated in conjunction with Bacillus amyloliquefaciens, no detachment was observed after 96 h, although once subjected to flow detachment. Electron microscopy confirmed the presence of both bacteria in the biofilm and revealed a network of fimbriae-like structures that were much less apparent in single-species biofilm and are likely to increase mechanical stability when developing in a TBR. This study presents the very first attempt in engineering S. griseus biofilms for continuous bioprocess applications. This is the first study of Streptomyces griseus grown as a biofilm in a tubular bioreactor. Repeated detachment and re-growth was observed, and co-cultivation with Bacillus amyloliquefaciens improved stability. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.-
dc.languageeng-
dc.relation.ispartofFEMS Microbiology Letters-
dc.subjectAttached growth-
dc.titleCharacteristics of Streptomyces griseus biofilms in continuous flow tubular reactors-
dc.typeArticle-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1111/1574-6968.12378-
dc.identifier.pmid24417230-
dc.identifier.scopuseid_2-s2.0-84897020484-
dc.identifier.volume352-
dc.identifier.issue2-
dc.identifier.spage157-
dc.identifier.epage164-
dc.identifier.eissn1574-6968-
dc.identifier.isiWOS:000333317500004-
dc.identifier.issnl0378-1097-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats