File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Granger-Causality-based air quality estimation with spatio-temporal (S-T) heterogeneous big data

TitleGranger-Causality-based air quality estimation with spatio-temporal (S-T) heterogeneous big data
Authors
Issue Date2015
PublisherIEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1001779
Citation
The 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, 26 April-1 May 2015. In Conference Proceedings, 2015, p. 612-617 How to Cite?
AbstractThis paper considers city-wide air quality estimation with limited available monitoring stations which are geographically sparse. Since air pollution is highly spatio-temporal (S-T) dependent and considerably influenced by urban dynamics (e.g., meteorology and traffic), we can infer the air quality not covered by monitoring stations with S-T heterogeneous urban big data. However, estimating air quality using S-T heterogeneous big data poses two challenges. The first challenge is due to with the data diversity, i.e., there are different categories of urban dynamics and some may be useless and even detrimental for the estimation. To overcome this, we first propose an S-T extended Granger causality model to analyze all the causalities among urban dynamics in a consistent manner. Then by implementing non-causality test, we rule out the urban dynamics that do not “Granger” cause air pollution. The second challenge is due to the time complexity when processing the massive volume of data. We propose to discover the region of influence (ROI) by selecting data with the highest causality levels spatially and temporally. Results show that we achieve higher accuracy using “part” of the data than “all” of the data. This may be explained by the most influential data eliminating errors induced by redundant or noisy data. The causality model observation and the city-wide air quality map are illustrated and visualized using data from Shenzhen, China.
DescriptionOpen Access
Persistent Identifierhttp://hdl.handle.net/10722/218963
ISBN

 

DC FieldValueLanguage
dc.contributor.authorZhu, Y-
dc.contributor.authorSun, C-
dc.contributor.authorLi, VOK-
dc.date.accessioned2015-09-18T07:02:20Z-
dc.date.available2015-09-18T07:02:20Z-
dc.date.issued2015-
dc.identifier.citationThe 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, 26 April-1 May 2015. In Conference Proceedings, 2015, p. 612-617-
dc.identifier.isbn978-1-4673-7131-5-
dc.identifier.urihttp://hdl.handle.net/10722/218963-
dc.descriptionOpen Access-
dc.description.abstractThis paper considers city-wide air quality estimation with limited available monitoring stations which are geographically sparse. Since air pollution is highly spatio-temporal (S-T) dependent and considerably influenced by urban dynamics (e.g., meteorology and traffic), we can infer the air quality not covered by monitoring stations with S-T heterogeneous urban big data. However, estimating air quality using S-T heterogeneous big data poses two challenges. The first challenge is due to with the data diversity, i.e., there are different categories of urban dynamics and some may be useless and even detrimental for the estimation. To overcome this, we first propose an S-T extended Granger causality model to analyze all the causalities among urban dynamics in a consistent manner. Then by implementing non-causality test, we rule out the urban dynamics that do not “Granger” cause air pollution. The second challenge is due to the time complexity when processing the massive volume of data. We propose to discover the region of influence (ROI) by selecting data with the highest causality levels spatially and temporally. Results show that we achieve higher accuracy using “part” of the data than “all” of the data. This may be explained by the most influential data eliminating errors induced by redundant or noisy data. The causality model observation and the city-wide air quality map are illustrated and visualized using data from Shenzhen, China.-
dc.languageeng-
dc.publisherIEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1001779-
dc.relation.ispartofIEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS-
dc.rightsIEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS. Copyright © IEEE.-
dc.rights©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.titleGranger-Causality-based air quality estimation with spatio-temporal (S-T) heterogeneous big data-
dc.typeConference_Paper-
dc.identifier.emailLi, VOK: vli@eee.hku.hk-
dc.identifier.authorityLi, VOK=rp00150-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1109/INFCOMW.2015.7179453-
dc.identifier.hkuros254301-
dc.identifier.spage612-
dc.identifier.epage617-
dc.publisher.placeUnited States-
dc.customcontrol.immutablesml 151104-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats