File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Protein-mediated macrophage adhesion and activation on biomaterials: A model for modulating cell behavior

TitleProtein-mediated macrophage adhesion and activation on biomaterials: A model for modulating cell behavior
Authors
Issue Date1999
Citation
Journal of Materials Science: Materials in Medicine, 1999, v. 10, n. 10-11, p. 601-605 How to Cite?
AbstractThe elucidation of proteins involved in biomaterial-modulated macrophage behavior is critical for the improvement of material performance and the initial exploration of material design capable of manipulating macrophage function for tissue engineering. In this paper, several in vitro and in vivo techniques are presented to demonstrate means of delineating a part of the complex molecular mechanisms involved in the interaction between biomaterial and macrophage adhesion and phenotypic development. The following conclusions were reached: (1) using radioimmunoassay, complement component C3 was found to be critical in mediating human macrophage adhesion on polyurethanes. (2) The presence of a diphenolic antioxidant additive in polyurethanes increased the propensity for complement upregulation but did not affect adherent macrophage density. (3) The subcutaneous cage-implant system was utilized to delineate interleukin-4 participation in the fusion of adherent macrophages to form foreign body giant cells in vivo in mice. The injection of purified interleukin-4 neutralizing antibody into the implanted cages significantly decreased the giant cell density; conversely, the giant cell density was significantly increased by the injection of recombinant interleukin-4 when compared with the controls. (4) The RGD and PHSRN amino acid sequences of the central cell binding domain and the PRRARV sequence of the C-terminal heparin binding domain of human plasma fibronectin were utilized to study the structure-functional relationship of protein in mediating macrophage behavior. Polyethyleneglycol-based networks grafted with the RGD-containing peptide supported higher adherent human macrophage density than surfaces grafted with other peptides. The formation of foreign body giant cell was highly dependent on the relative orientation between PHSRN and RGD domains located in a single peptide. | The elucidation of proteins involved in biomaterial-modulated macrophage behavior is critical for the improvement of material performance and the initial exploration of material design capable of manipulating macrophage function for tissue engineering. In this paper, several in vitro and in vivo techniques are presented to demonstrate means of delineating a part of the complex molecular mechanisms involved in the interaction between biomaterial and macrophage adhesion and phenotypic development. The following conclusions were reached: (1) using radioimmunoassay, complement component C3 was found to be critical in mediating human macrophage adhesion on polyurethanes. (2) The presence of a diphenolic antioxidant additive in polyurethanes increased the propensity for complement upregulation but did not affect adherent macrophage density. (3) The subcutaneous cage-implant system was utilized to delineate interleukin-4 participation in the fusion of adherent macrophages to form foreign body giant cells in vivo in mice. The injection of purified interleukin-4 neutralizing antibody into the implanted cages significantly decreased the giant cell density; conversely, the giant cell density was significantly increased by the injection of recombinant interleukin-4 when compared with the controls. (4) The RGD and PHSRN amino acid sequences of the central cell binding domain and the PRRARV sequence of the C-terminal heparin binding domain of human plasma fibronectin were utilized to study the structure-functional relationship of protein in mediating macrophage behavior. Polyethyleneglycol-based networks grafted with the RGD-containing peptide supported higher adherent human macrophage density than surfaces grafted with other peptides. The formation of foreign body giant cell was highly dependent on the relative orientation between PHSRN and RGD domains located in a single peptide.
Persistent Identifierhttp://hdl.handle.net/10722/216154
ISSN
2015 Impact Factor: 2.272
2013 SCImago Journal Rankings: 0.897

 

DC FieldValueLanguage
dc.contributor.authorKao, W. J.-
dc.contributor.authorHubbell, J. A.-
dc.contributor.authorAnderson, J. M.-
dc.date.accessioned2015-08-25T10:21:59Z-
dc.date.available2015-08-25T10:21:59Z-
dc.date.issued1999-
dc.identifier.citationJournal of Materials Science: Materials in Medicine, 1999, v. 10, n. 10-11, p. 601-605-
dc.identifier.issn0957-4530-
dc.identifier.urihttp://hdl.handle.net/10722/216154-
dc.description.abstractThe elucidation of proteins involved in biomaterial-modulated macrophage behavior is critical for the improvement of material performance and the initial exploration of material design capable of manipulating macrophage function for tissue engineering. In this paper, several in vitro and in vivo techniques are presented to demonstrate means of delineating a part of the complex molecular mechanisms involved in the interaction between biomaterial and macrophage adhesion and phenotypic development. The following conclusions were reached: (1) using radioimmunoassay, complement component C3 was found to be critical in mediating human macrophage adhesion on polyurethanes. (2) The presence of a diphenolic antioxidant additive in polyurethanes increased the propensity for complement upregulation but did not affect adherent macrophage density. (3) The subcutaneous cage-implant system was utilized to delineate interleukin-4 participation in the fusion of adherent macrophages to form foreign body giant cells in vivo in mice. The injection of purified interleukin-4 neutralizing antibody into the implanted cages significantly decreased the giant cell density; conversely, the giant cell density was significantly increased by the injection of recombinant interleukin-4 when compared with the controls. (4) The RGD and PHSRN amino acid sequences of the central cell binding domain and the PRRARV sequence of the C-terminal heparin binding domain of human plasma fibronectin were utilized to study the structure-functional relationship of protein in mediating macrophage behavior. Polyethyleneglycol-based networks grafted with the RGD-containing peptide supported higher adherent human macrophage density than surfaces grafted with other peptides. The formation of foreign body giant cell was highly dependent on the relative orientation between PHSRN and RGD domains located in a single peptide. | The elucidation of proteins involved in biomaterial-modulated macrophage behavior is critical for the improvement of material performance and the initial exploration of material design capable of manipulating macrophage function for tissue engineering. In this paper, several in vitro and in vivo techniques are presented to demonstrate means of delineating a part of the complex molecular mechanisms involved in the interaction between biomaterial and macrophage adhesion and phenotypic development. The following conclusions were reached: (1) using radioimmunoassay, complement component C3 was found to be critical in mediating human macrophage adhesion on polyurethanes. (2) The presence of a diphenolic antioxidant additive in polyurethanes increased the propensity for complement upregulation but did not affect adherent macrophage density. (3) The subcutaneous cage-implant system was utilized to delineate interleukin-4 participation in the fusion of adherent macrophages to form foreign body giant cells in vivo in mice. The injection of purified interleukin-4 neutralizing antibody into the implanted cages significantly decreased the giant cell density; conversely, the giant cell density was significantly increased by the injection of recombinant interleukin-4 when compared with the controls. (4) The RGD and PHSRN amino acid sequences of the central cell binding domain and the PRRARV sequence of the C-terminal heparin binding domain of human plasma fibronectin were utilized to study the structure-functional relationship of protein in mediating macrophage behavior. Polyethyleneglycol-based networks grafted with the RGD-containing peptide supported higher adherent human macrophage density than surfaces grafted with other peptides. The formation of foreign body giant cell was highly dependent on the relative orientation between PHSRN and RGD domains located in a single peptide.-
dc.languageeng-
dc.relation.ispartofJournal of Materials Science: Materials in Medicine-
dc.titleProtein-mediated macrophage adhesion and activation on biomaterials: A model for modulating cell behavior-
dc.typeConference_Paper-
dc.description.natureLink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-0032702839-
dc.identifier.volume10-
dc.identifier.issue10-11-
dc.identifier.spage601-
dc.identifier.epage605-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats