File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Characterizing crustal melt episodes in the Himalayan orogen

TitleCharacterizing crustal melt episodes in the Himalayan orogen
Authors
Issue Date2014
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Chan, Y. I. [陳有昌]. (2014). Characterizing crustal melt episodes in the Himalayan orogen. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5303856
AbstractExtensive studies have been undertaking in exploring the tectonic evolution of the Himalayan Orogen. Various tectonic models were developed to explain and constraint spatially and temporally critical events including the collision of Indian Plate with the Eurasia Plate, crustal thickening in association with the indentation, crustal spreading of the Tibetan Plateau. Recent study by King et al., 2011 identified two distinct leucogranite suites which were formed by contrasting tectonic actions at Sakya. They are Equigranular Anastomosing Leucogranite (AEG) formed under prograde fluidpresent condition while the Discrete Porphyritic Pluton Leucogranite (DPP) formed with retro-grade fluid-absent environment. Based on the characteristics of AEG and DPP, this study started with the acquisition of geochemistry data of rock samples collected for researches at various locations of the Himalaya Orogen. The two leucogranite suites were characterized through the study of their geochemistry comprised major elements, trace elements and rare earth elements models. Results of the studies concluded the existence of AEGs and DPPs distributed over the eastern area of the Himalaya Orogen beyond longitude 85 degree East. DPPs are also found at the far West location of the orogen. AEGs are typically formed from around 38Ma to 23Ma, while DPPs are of young age from 23Ma to 15Ma. Based on the observation of missing, or paucity in data for AEG and DPPs available to the west of longitude 85 degree East, it is hypothesized that recent collision of the Arabia plate to the Iran Domain inhibited the northward indentation movement of the Indian plate that not only caused the anticlockwise rotation of the Indian plate but also decreased the rate of tectonic movement of the Indian plate in the West relative to Eurasia plate. The slow rate of tectonic movement may result in insufficient thickening/energy developed within the crustal layer to cause any melting. Further studies to examine and development of the hypothesis is recommended.
DegreeMaster of Science
SubjectOrogeny - Himalaya Mountains
Plate tectonics
Geology - Himalaya Mountains
Dept/ProgramApplied Geosciences
Persistent Identifierhttp://hdl.handle.net/10722/206505

 

DC FieldValueLanguage
dc.contributor.authorChan, Yau-cheong, Ian-
dc.contributor.author陳有昌-
dc.date.accessioned2014-11-03T23:14:50Z-
dc.date.available2014-11-03T23:14:50Z-
dc.date.issued2014-
dc.identifier.citationChan, Y. I. [陳有昌]. (2014). Characterizing crustal melt episodes in the Himalayan orogen. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5303856-
dc.identifier.urihttp://hdl.handle.net/10722/206505-
dc.description.abstractExtensive studies have been undertaking in exploring the tectonic evolution of the Himalayan Orogen. Various tectonic models were developed to explain and constraint spatially and temporally critical events including the collision of Indian Plate with the Eurasia Plate, crustal thickening in association with the indentation, crustal spreading of the Tibetan Plateau. Recent study by King et al., 2011 identified two distinct leucogranite suites which were formed by contrasting tectonic actions at Sakya. They are Equigranular Anastomosing Leucogranite (AEG) formed under prograde fluidpresent condition while the Discrete Porphyritic Pluton Leucogranite (DPP) formed with retro-grade fluid-absent environment. Based on the characteristics of AEG and DPP, this study started with the acquisition of geochemistry data of rock samples collected for researches at various locations of the Himalaya Orogen. The two leucogranite suites were characterized through the study of their geochemistry comprised major elements, trace elements and rare earth elements models. Results of the studies concluded the existence of AEGs and DPPs distributed over the eastern area of the Himalaya Orogen beyond longitude 85 degree East. DPPs are also found at the far West location of the orogen. AEGs are typically formed from around 38Ma to 23Ma, while DPPs are of young age from 23Ma to 15Ma. Based on the observation of missing, or paucity in data for AEG and DPPs available to the west of longitude 85 degree East, it is hypothesized that recent collision of the Arabia plate to the Iran Domain inhibited the northward indentation movement of the Indian plate that not only caused the anticlockwise rotation of the Indian plate but also decreased the rate of tectonic movement of the Indian plate in the West relative to Eurasia plate. The slow rate of tectonic movement may result in insufficient thickening/energy developed within the crustal layer to cause any melting. Further studies to examine and development of the hypothesis is recommended.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.subject.lcshOrogeny - Himalaya Mountains-
dc.subject.lcshPlate tectonics-
dc.subject.lcshGeology - Himalaya Mountains-
dc.titleCharacterizing crustal melt episodes in the Himalayan orogen-
dc.typePG_Thesis-
dc.identifier.hkulb5303856-
dc.description.thesisnameMaster of Science-
dc.description.thesislevelMaster-
dc.description.thesisdisciplineApplied Geosciences-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b5303856-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats