File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Optical coherence tomography : from system design to spectroscopic applications

TitleOptical coherence tomography : from system design to spectroscopic applications
Authors
Advisors
Issue Date2014
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Xu, J. [徐鉴冰]. (2014). Optical coherence tomography : from system design to spectroscopic applications. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5317037
AbstractOptical coherence tomography (OCT), as a newly developed imaging modality, has attracted significant attention due to its capability to obtain the cross-sectional information of biological tissues in a non-invasive way, with resolution in the range of several micrometers. The third-generation swept source OCT (SS-OCT), is superior in the speed, imaging range and signal-to-noise ratio (SNR) compared with the previous time-domain OCT (TD-OCT) and spectral domain OCT (SD-OCT), and therefore forms our research focus. In this thesis, for the first time, I investigate the deployment of Fourier domain mode-locked (FDML) swept laser by utilizing the bismuth-based erbium doper fiber (Bi-EDF) with a sweeping bandwidth of ~ 81nm achieved. Following, fiber Raman amplifier (FRA) is also investigated by employing multiple Raman pumps. The tuning range is ~111.8nm, which is much larger than the previous reported Raman pumped FDML in the 1550nm region. Imaging was performed to validate the feasibility of the proposed schemes for the SS-OCT applications, respectively. In addition to the FDML swept laser cavity design, speckle noise reduction is also of great importance in OCT, which can significantly improve the visibility of the obtained OCT images. I demonstrate two different speckle reduction methods for OCT applications, which are superior in suppressing speckle noise and reserving the one-dimensional (1D) and two-dimensional (2D) signal information, respectively. Applying the proposed wavelet domain compounding (WDC) and contourlet shrinkage method to despeckle the OCT images, the visibility of the OCT images was significantly improved, with negligible edge preservation compromise. Spectroscopic information is also of interest to many researchers as it provides additional spectroscopic contrast, which on one hand, will improve the visualization of the images, and on the other hand, will enable the classification of different tissue types and help the process of discrimination between invasive and noninvasive tumors. Compared with our previous reported work about dual-band spectroscopic OCT based on optical parametric amplifier (OPA) to generate another idler band, which will be used as the second band for dual-band spectroscopic analysis, I further extend the dual-band spectroscopic OCT to the endoscopic applications, and investigate the dual-band FDML swept laser configuration based on a custom-designed dual-channel driver to synchronize the two different wavelength bands, centered at 1310 and 1550 nm, respectively. OCT Images for different bands are captured and post-processed by coding the spectral difference in different colors. In short, in this thesis, the investigations of OCT range from system design, speckle reduction to the spectroscopic applications. All these research efforts will extend the current FDML techniques for a wide range of SS-OCT applications. These schemes may be useful in OCT swept laser source build up, speckle noise reduction, and the extension of spectroscopic analysis.
DegreeDoctor of Philosophy
SubjectOptical coherence tomography
Dept/ProgramElectrical and Electronic Engineering
Persistent Identifierhttp://hdl.handle.net/10722/206473
HKU Library Item IDb5317037

 

DC FieldValueLanguage
dc.contributor.advisorLam, EYM-
dc.contributor.advisorWong, KKY-
dc.contributor.authorXu, Jianbing-
dc.contributor.author徐鉴冰-
dc.date.accessioned2014-10-31T23:15:58Z-
dc.date.available2014-10-31T23:15:58Z-
dc.date.issued2014-
dc.identifier.citationXu, J. [徐鉴冰]. (2014). Optical coherence tomography : from system design to spectroscopic applications. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5317037-
dc.identifier.urihttp://hdl.handle.net/10722/206473-
dc.description.abstractOptical coherence tomography (OCT), as a newly developed imaging modality, has attracted significant attention due to its capability to obtain the cross-sectional information of biological tissues in a non-invasive way, with resolution in the range of several micrometers. The third-generation swept source OCT (SS-OCT), is superior in the speed, imaging range and signal-to-noise ratio (SNR) compared with the previous time-domain OCT (TD-OCT) and spectral domain OCT (SD-OCT), and therefore forms our research focus. In this thesis, for the first time, I investigate the deployment of Fourier domain mode-locked (FDML) swept laser by utilizing the bismuth-based erbium doper fiber (Bi-EDF) with a sweeping bandwidth of ~ 81nm achieved. Following, fiber Raman amplifier (FRA) is also investigated by employing multiple Raman pumps. The tuning range is ~111.8nm, which is much larger than the previous reported Raman pumped FDML in the 1550nm region. Imaging was performed to validate the feasibility of the proposed schemes for the SS-OCT applications, respectively. In addition to the FDML swept laser cavity design, speckle noise reduction is also of great importance in OCT, which can significantly improve the visibility of the obtained OCT images. I demonstrate two different speckle reduction methods for OCT applications, which are superior in suppressing speckle noise and reserving the one-dimensional (1D) and two-dimensional (2D) signal information, respectively. Applying the proposed wavelet domain compounding (WDC) and contourlet shrinkage method to despeckle the OCT images, the visibility of the OCT images was significantly improved, with negligible edge preservation compromise. Spectroscopic information is also of interest to many researchers as it provides additional spectroscopic contrast, which on one hand, will improve the visualization of the images, and on the other hand, will enable the classification of different tissue types and help the process of discrimination between invasive and noninvasive tumors. Compared with our previous reported work about dual-band spectroscopic OCT based on optical parametric amplifier (OPA) to generate another idler band, which will be used as the second band for dual-band spectroscopic analysis, I further extend the dual-band spectroscopic OCT to the endoscopic applications, and investigate the dual-band FDML swept laser configuration based on a custom-designed dual-channel driver to synchronize the two different wavelength bands, centered at 1310 and 1550 nm, respectively. OCT Images for different bands are captured and post-processed by coding the spectral difference in different colors. In short, in this thesis, the investigations of OCT range from system design, speckle reduction to the spectroscopic applications. All these research efforts will extend the current FDML techniques for a wide range of SS-OCT applications. These schemes may be useful in OCT swept laser source build up, speckle noise reduction, and the extension of spectroscopic analysis.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subject.lcshOptical coherence tomography-
dc.titleOptical coherence tomography : from system design to spectroscopic applications-
dc.typePG_Thesis-
dc.identifier.hkulb5317037-
dc.description.thesisnameDoctor of Philosophy-
dc.description.thesislevelDoctoral-
dc.description.thesisdisciplineElectrical and Electronic Engineering-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b5317037-
dc.identifier.mmsid991039907229703414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats