File Download

There are no files associated with this item.

Supplementary

Conference Paper: Detection and Treatment of Specific Cancer Cells Using Smart Nanoparticles

TitleDetection and Treatment of Specific Cancer Cells Using Smart Nanoparticles
Authors
Issue Date2013
PublisherThe Materials Research Society (MRS).
Citation
The Fall Meeting & Exhibit of the Materials Research Society (MRS), Boston, Massachusetts, USA, 1-6 December 2013, abstract no. I1.05 How to Cite?
AbstractDeveloping high-performance, multifunctional nanodevices for cancer (“theranostics”) is a major direction in nanomedicine. Magnetic-plasmonic nanoparticles (NPs) have high potential for medical applications. High surface enhanced Raman scattering (SERS) signals due to suitably shaped plasmonic Au NPs can be used for biological sensing and medical imaging. On the other hand, magnetic Fe3O4 NPs can generate heat under an alternating magnetic field, enabling hyperthermia therapy. Furthermore, a thermo-sensitive material such as poly(N-isopropylacrylamide) (pNIPAm) can be used for drug delivery. Combining Au, a Raman reporter, Fe3O4, pNIPAm, drug and an antibody could form novel nanodevices with both diagnostic and therapeutic functions. HER2-positive breast cancer is a cancer that tests positive for a protein called human epidermal growth factor receptor 2 (HER2), which promotes cancer cell growth. In this investigation, drug-loaded, thermo-sensitive and magnetic-plasmonic Fe3O4@Au@pNIPAm hybrid NPs with HER2 targeting ability were developed (NP diameter: ~50 nm). HER-2/c-erbB-2/neu rabbit polyclonal antibody was conjugated to hybrid NPs for cancer cell targeting. Sensing of HER2-positive cancer cells was provided by high SERS signals that were enabled by hybrid NPs which acted as a SERS-active tag. These hybrid NPs could only be internalized by human breast cancer cells with HER2 (e.g., SK-BR-3 cells), but not by human breast cancer cells without HER2 (e.g., MCF-7 cells). Under a NIR laser or an alternating magnetic field, hyperthermia would occur, causing cancer cell death. Firstly, core-shell structured Fe3O4@Au NPs were made. A pNIPAm coating, which was incorporated with 4-MBA (a Raman reporter) and 5-Fluoroaracil (5-FU, an anti-cancer drug), was produced on Fe3O4@Au. pNIPAm had a lower critical solution temperature (LCST) of 32.3°C. In in vitro release tests, below LCST, only a small amount of 5-FU was released from hybrid NPs. At 42°C, 5-FU was released quickly from hybrid NPs. The viability of SK-BR-3 cells and MCF-7 cells after 48 hrs incubation with hybrid NPs (at various concentrations: 0 to 100 µg/mL) was examined using MTT assay. The hybrid NPs exhibited good biocompatibility even at the NP concentration of 100 µg/mL. Antibody-conjugated hybrid NPs as a stable SERS-active tag for HER2-positive cancer cells were demonstrated. SK-BR-3 cells were detected via strong SERS signals, whereas MCF-7 cells showed little SERS signals. NPs in the right size range accumulated preferentially at SK-BR-3 cells. TEM and LSCM analyses showed that hybrid NPs were successfully internalized by SK-BR-3 cells. In contrast, no cellular uptake of hybrid NPs was observed in MCF-7 cells which are HER2-negtive cells. The hybrid NPs also offered hyperthermia therapy for cancer.
DescriptionSymposium I: Multiscale Materials in the Study and Treatment of Cancer
Session I1: Microenviroments and Nanoparticles to Quantify and Target Cancer
Persistent Identifierhttp://hdl.handle.net/10722/204200

 

DC FieldValueLanguage
dc.contributor.authorLi, Sen_US
dc.contributor.authorWang, Men_US
dc.date.accessioned2014-09-19T21:23:10Z-
dc.date.available2014-09-19T21:23:10Z-
dc.date.issued2013en_US
dc.identifier.citationThe Fall Meeting & Exhibit of the Materials Research Society (MRS), Boston, Massachusetts, USA, 1-6 December 2013, abstract no. I1.05en_US
dc.identifier.urihttp://hdl.handle.net/10722/204200-
dc.descriptionSymposium I: Multiscale Materials in the Study and Treatment of Cancer-
dc.descriptionSession I1: Microenviroments and Nanoparticles to Quantify and Target Cancer-
dc.description.abstractDeveloping high-performance, multifunctional nanodevices for cancer (“theranostics”) is a major direction in nanomedicine. Magnetic-plasmonic nanoparticles (NPs) have high potential for medical applications. High surface enhanced Raman scattering (SERS) signals due to suitably shaped plasmonic Au NPs can be used for biological sensing and medical imaging. On the other hand, magnetic Fe3O4 NPs can generate heat under an alternating magnetic field, enabling hyperthermia therapy. Furthermore, a thermo-sensitive material such as poly(N-isopropylacrylamide) (pNIPAm) can be used for drug delivery. Combining Au, a Raman reporter, Fe3O4, pNIPAm, drug and an antibody could form novel nanodevices with both diagnostic and therapeutic functions. HER2-positive breast cancer is a cancer that tests positive for a protein called human epidermal growth factor receptor 2 (HER2), which promotes cancer cell growth. In this investigation, drug-loaded, thermo-sensitive and magnetic-plasmonic Fe3O4@Au@pNIPAm hybrid NPs with HER2 targeting ability were developed (NP diameter: ~50 nm). HER-2/c-erbB-2/neu rabbit polyclonal antibody was conjugated to hybrid NPs for cancer cell targeting. Sensing of HER2-positive cancer cells was provided by high SERS signals that were enabled by hybrid NPs which acted as a SERS-active tag. These hybrid NPs could only be internalized by human breast cancer cells with HER2 (e.g., SK-BR-3 cells), but not by human breast cancer cells without HER2 (e.g., MCF-7 cells). Under a NIR laser or an alternating magnetic field, hyperthermia would occur, causing cancer cell death. Firstly, core-shell structured Fe3O4@Au NPs were made. A pNIPAm coating, which was incorporated with 4-MBA (a Raman reporter) and 5-Fluoroaracil (5-FU, an anti-cancer drug), was produced on Fe3O4@Au. pNIPAm had a lower critical solution temperature (LCST) of 32.3°C. In in vitro release tests, below LCST, only a small amount of 5-FU was released from hybrid NPs. At 42°C, 5-FU was released quickly from hybrid NPs. The viability of SK-BR-3 cells and MCF-7 cells after 48 hrs incubation with hybrid NPs (at various concentrations: 0 to 100 µg/mL) was examined using MTT assay. The hybrid NPs exhibited good biocompatibility even at the NP concentration of 100 µg/mL. Antibody-conjugated hybrid NPs as a stable SERS-active tag for HER2-positive cancer cells were demonstrated. SK-BR-3 cells were detected via strong SERS signals, whereas MCF-7 cells showed little SERS signals. NPs in the right size range accumulated preferentially at SK-BR-3 cells. TEM and LSCM analyses showed that hybrid NPs were successfully internalized by SK-BR-3 cells. In contrast, no cellular uptake of hybrid NPs was observed in MCF-7 cells which are HER2-negtive cells. The hybrid NPs also offered hyperthermia therapy for cancer.-
dc.languageengen_US
dc.publisherThe Materials Research Society (MRS).-
dc.relation.ispartofFall Meeting & Exhibit of the Materials Research Society (MRS)en_US
dc.titleDetection and Treatment of Specific Cancer Cells Using Smart Nanoparticlesen_US
dc.typeConference_Paperen_US
dc.identifier.emailLi, S: echolsy@hku.hken_US
dc.identifier.emailWang, M: memwang@hku.hken_US
dc.identifier.authorityWang, M=rp00185en_US
dc.identifier.hkuros235493en_US
dc.publisher.placeUnited Statesen_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats