File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Phosphor-free multilayered LEDs and thin film LEDs

TitlePhosphor-free multilayered LEDs and thin film LEDs
Authors
Advisors
Advisor(s):Choi, HW
Issue Date2013
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Cheung, Y. [張煜輝]. (2013). Phosphor-free multilayered LEDs and thin film LEDs. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5090006
AbstractThe irreversible trend of replacing the conventional incandescence light bulbs and fluorescent tubes with white light emitting diodes (LEDs) aims to use less energy for lighting. Plenty of the commercially available white LEDs are made from blue LED chips with few-micron-thick gallium nitride (GaN) grown on several hundred micron thick transparent sapphire substrates, followed by coating of yellow phosphor powder on top of the chips for converting the emitted blue light to white light. Not only does such approach give the white LEDs a high colour temperature, but also introduces conversion loss from the phosphor powder. The former issue makes users feel unpleasant for living while the latter wastes energy. Therefore, a new version of phosphor-free multilayered vertically-stacked colour-tunable LED structure is proposed in this thesis such that it allows users to regulate the colour temperature of light source according to their preference. Simultaneously, the device replaces light conversion agents with direct light generation. The fabrication of the proposed device involved the use of backside laser micromachining of trenches on the substrates of the upper layers of basic colour LED chips at a size just enough to fit the wire-bonded wire of lower layer LED chips inside. With equal-sized basic colour LED chips tightly packed together, colour homogeneity of the proposed device is enhanced and thus provides the proposed device the capability to substitute the conventional RGB LED devices with basic colour LED chips separately aligned. To improve the internal quantum efficiency and light extraction of nitride-based LEDs, thin film photonic crystal LED is proposed. Light and heat trapping sapphire substrate is removed by laser lift-off (LLO), forming GaN thin film on an electrically conductive opaque substrate with better heat conductivity than sapphire. By proper etching, N-dopped GaN layer can be exposed, resulting in the formation of vertical LED. Compared with conventional lateral LEDs with sapphire substrate, carrier path of vertical LED is greatly reduced and hence achieving lower internal resistance. To further boost light extraction, the device top surface is patterned with nanopillars by nanosphere lithography. A monolayer of closely-packed silica nanospheres is patterned on the N-GaN surface by spin coating. It acts as a mask for etching the nanopillars which bandfold lights from diffracted modes to radiative modes located above the light line for extraction. A typical laser LLO process results in thin films with undopped gallium nitride (U-GaN) surface or N-GaN (after etching) faces up. If P-side up is necessary, the GaN layers are first required to attach to a temporary substrate for LLO and then the LLO exposed surface is adhered to the real substrate before temporary substrate is detached. This method is proposed to relieve the issue of light channeling inside the sapphire substrate of full colour LED micro-display panel fabricated on a single GaN on Sapphire wafer. With the elimination of sapphire, “parasitic” blue emissions from the area surrounding pixels are reduced which in turns improved the observable effects from the microspheres jet-printed on the top surface of the panel.
DegreeMaster of Philosophy
SubjectLight emitting diodes.
Thin film devices.
Dept/ProgramElectrical and Electronic Engineering
Persistent Identifierhttp://hdl.handle.net/10722/192861
HKU Library Item IDb5090006

 

DC FieldValueLanguage
dc.contributor.advisorChoi, HW-
dc.contributor.authorCheung, Yuk-fai-
dc.contributor.author張煜輝-
dc.date.accessioned2013-11-24T02:01:15Z-
dc.date.available2013-11-24T02:01:15Z-
dc.date.issued2013-
dc.identifier.citationCheung, Y. [張煜輝]. (2013). Phosphor-free multilayered LEDs and thin film LEDs. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5090006-
dc.identifier.urihttp://hdl.handle.net/10722/192861-
dc.description.abstractThe irreversible trend of replacing the conventional incandescence light bulbs and fluorescent tubes with white light emitting diodes (LEDs) aims to use less energy for lighting. Plenty of the commercially available white LEDs are made from blue LED chips with few-micron-thick gallium nitride (GaN) grown on several hundred micron thick transparent sapphire substrates, followed by coating of yellow phosphor powder on top of the chips for converting the emitted blue light to white light. Not only does such approach give the white LEDs a high colour temperature, but also introduces conversion loss from the phosphor powder. The former issue makes users feel unpleasant for living while the latter wastes energy. Therefore, a new version of phosphor-free multilayered vertically-stacked colour-tunable LED structure is proposed in this thesis such that it allows users to regulate the colour temperature of light source according to their preference. Simultaneously, the device replaces light conversion agents with direct light generation. The fabrication of the proposed device involved the use of backside laser micromachining of trenches on the substrates of the upper layers of basic colour LED chips at a size just enough to fit the wire-bonded wire of lower layer LED chips inside. With equal-sized basic colour LED chips tightly packed together, colour homogeneity of the proposed device is enhanced and thus provides the proposed device the capability to substitute the conventional RGB LED devices with basic colour LED chips separately aligned. To improve the internal quantum efficiency and light extraction of nitride-based LEDs, thin film photonic crystal LED is proposed. Light and heat trapping sapphire substrate is removed by laser lift-off (LLO), forming GaN thin film on an electrically conductive opaque substrate with better heat conductivity than sapphire. By proper etching, N-dopped GaN layer can be exposed, resulting in the formation of vertical LED. Compared with conventional lateral LEDs with sapphire substrate, carrier path of vertical LED is greatly reduced and hence achieving lower internal resistance. To further boost light extraction, the device top surface is patterned with nanopillars by nanosphere lithography. A monolayer of closely-packed silica nanospheres is patterned on the N-GaN surface by spin coating. It acts as a mask for etching the nanopillars which bandfold lights from diffracted modes to radiative modes located above the light line for extraction. A typical laser LLO process results in thin films with undopped gallium nitride (U-GaN) surface or N-GaN (after etching) faces up. If P-side up is necessary, the GaN layers are first required to attach to a temporary substrate for LLO and then the LLO exposed surface is adhered to the real substrate before temporary substrate is detached. This method is proposed to relieve the issue of light channeling inside the sapphire substrate of full colour LED micro-display panel fabricated on a single GaN on Sapphire wafer. With the elimination of sapphire, “parasitic” blue emissions from the area surrounding pixels are reduced which in turns improved the observable effects from the microspheres jet-printed on the top surface of the panel.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.source.urihttp://hub.hku.hk/bib/B50900067-
dc.subject.lcshLight emitting diodes.-
dc.subject.lcshThin film devices.-
dc.titlePhosphor-free multilayered LEDs and thin film LEDs-
dc.typePG_Thesis-
dc.identifier.hkulb5090006-
dc.description.thesisnameMaster of Philosophy-
dc.description.thesislevelMaster-
dc.description.thesisdisciplineElectrical and Electronic Engineering-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b5090006-
dc.date.hkucongregation2013-
dc.identifier.mmsid991035826839703414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats