File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: On linear equations in primes and powers of two

TitleOn linear equations in primes and powers of two
Authors
Advisors
Advisor(s):Tsang, KM
Issue Date2013
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Kong, Y. [孔亚方]. (2013). On linear equations in primes and powers of two. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5053376
AbstractIt is known that the binary Goldbach problem is one of the open problems on linear equations in primes, and it has the Goldbach-Linnik problem, that is, representation of an even integer in the form of two odd primes and powers of two, as its approximate problem. The theme of my research is on linear equations in primes and powers of two. Precisely, there are two cases: one pair of linear equations in primes and powers of two, and one class of pairs of linear equations in primes and powers of two, in this thesis. In 2002, D.R. Heath-Brown and P.C. Puchta obtained that every sufficiently large even integer is the sum of two odd primes and k powers of two. Here k = 13, or = 7 under the generalized Riemann hypothesis. In 2010, B. Green and T. Tao obtained that every pair of linear equations in four prime variables with coefficients matrix A = (a_ij)s×t with s ≤ t, satisfying nondegenerate condition, that is, A has full rank and the only elements of the row-space of A over Q with two or fewer nonzero entries is the zero vector, is solvable. The restriction on the coefficient matrix means that they excluded the case of the binary Goldbach problem. Motivated by the above results, it is obtained that for every pair of sufficiently large positive even integers B1, B2, the simultaneous equation {█({B1 = p1 + p2 + 2v1 + 2v2 + · · · + 2vk ,@B2 = p3 + p4 + 2v1 + 2v2 + · · · + 2vk ,)┤ (1) is solvable, where p1, · · · , p4 are odd primes, each vi is a positive integer, and the positive integer k ≥ 63 or ≥ 31 under the generalized Riemann hypothesis. Note that, in 1989, M.C. Liu and K.M. Tsang have obtained that subject to some natural conditions on the coefficients, every pair of linear equations in five prime variables is solvable. Therefore one class of pairs of linear equations in four prime variables with special coefficient matrix and powers of two is considered. Indeed, it is deduced that every pair of integers B1 and B2 satisfying B1 ≡ 0 (mod 2), 3BB1 > e^(eB^48 ), B2 ≡ ∑_1^4▒= 1^(a_i ) (mod 2) and |B2| < BB1, where B = max1≤j≤4(2, |aj|), can be represented as {█(B1 = 〖p1〗_1 + p2 + 2^(v_1 ) + 2^(v_2 )+ · · · + 2^(v_k )@B2 = a1p1 + a2p2 + a3p3 + a4p4 + 2^(v_1 )+ 2^(v_2 )+ · · · + 2^(v_k ) )┤ (2) with k being a positive integer. Here p1, · · · p4 are odd primes, each 〖v 〗_iis a positive integer and the integral coefficients ai (i = 1, 2, 3, 4) satisfy {█((〖a 〗_1- 〖a 〗_2, 〖a 〗_3, 〖a 〗_4) = 1,@〖a 〗_1 〖a 〗_2< 0, 〖a 〗_3 〖a 〗_4<0,)┤ Moreover it is calculated that the positive integer k ≥ g(〖a 〗_1- 〖a 〗_2, 〖a 〗_3, 〖a 〗_4) where g(〖a 〗_21- 〖a 〗_22, 〖a 〗_23, 〖a 〗_24) = [(log⁡〖G(〖a 〗_21, …, 〖a 〗_24 〗)-log⁡〖F (〖a 〗_21, …, 〖a 〗_24)〗)/log0.975805-84.0285], (3) G(〖a 〗_21, 〖a 〗_22, 〖a 〗_23, 〖a 〗_24) = (min(1/(|a_24 |), 1/(|a_23 |)) - (〖|a〗_(21 )- a_22 |)/(|〖a_23 a〗_24 |) 〖(3B)〗^(-1) ×〖(3B)〗^(-1) (1-0.000001)- 〖(3B)〗^(-1-4), with B = max1≤j≤4(2, |a2j|), and F(a_21, …, a_24) = √(f(a_21)f〖(a〗_22 )) with f(a_2i) = {█(4414.15h (a_21-1)+5.088331 if a_21≠1@59.8411 if a_21=1,)┤ for i = 1, 2, and h(n) =∏_(p|n,p>2)▒(p-1)/(p-2). This result, if without the powers of two, can make up some of the cases excluded in Green and Tao’s paper.
DegreeDoctor of Philosophy
SubjectNumbers, Prime
Algebras, Linear.
Number theory.
Dept/ProgramMathematics
Persistent Identifierhttp://hdl.handle.net/10722/188257

 

DC FieldValueLanguage
dc.contributor.advisorTsang, KM-
dc.contributor.authorKong, Yafang.-
dc.contributor.author孔亚方.-
dc.date.accessioned2013-08-27T08:02:51Z-
dc.date.available2013-08-27T08:02:51Z-
dc.date.issued2013-
dc.identifier.citationKong, Y. [孔亚方]. (2013). On linear equations in primes and powers of two. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5053376-
dc.identifier.urihttp://hdl.handle.net/10722/188257-
dc.description.abstractIt is known that the binary Goldbach problem is one of the open problems on linear equations in primes, and it has the Goldbach-Linnik problem, that is, representation of an even integer in the form of two odd primes and powers of two, as its approximate problem. The theme of my research is on linear equations in primes and powers of two. Precisely, there are two cases: one pair of linear equations in primes and powers of two, and one class of pairs of linear equations in primes and powers of two, in this thesis. In 2002, D.R. Heath-Brown and P.C. Puchta obtained that every sufficiently large even integer is the sum of two odd primes and k powers of two. Here k = 13, or = 7 under the generalized Riemann hypothesis. In 2010, B. Green and T. Tao obtained that every pair of linear equations in four prime variables with coefficients matrix A = (a_ij)s×t with s ≤ t, satisfying nondegenerate condition, that is, A has full rank and the only elements of the row-space of A over Q with two or fewer nonzero entries is the zero vector, is solvable. The restriction on the coefficient matrix means that they excluded the case of the binary Goldbach problem. Motivated by the above results, it is obtained that for every pair of sufficiently large positive even integers B1, B2, the simultaneous equation {█({B1 = p1 + p2 + 2v1 + 2v2 + · · · + 2vk ,@B2 = p3 + p4 + 2v1 + 2v2 + · · · + 2vk ,)┤ (1) is solvable, where p1, · · · , p4 are odd primes, each vi is a positive integer, and the positive integer k ≥ 63 or ≥ 31 under the generalized Riemann hypothesis. Note that, in 1989, M.C. Liu and K.M. Tsang have obtained that subject to some natural conditions on the coefficients, every pair of linear equations in five prime variables is solvable. Therefore one class of pairs of linear equations in four prime variables with special coefficient matrix and powers of two is considered. Indeed, it is deduced that every pair of integers B1 and B2 satisfying B1 ≡ 0 (mod 2), 3BB1 > e^(eB^48 ), B2 ≡ ∑_1^4▒= 1^(a_i ) (mod 2) and |B2| < BB1, where B = max1≤j≤4(2, |aj|), can be represented as {█(B1 = 〖p1〗_1 + p2 + 2^(v_1 ) + 2^(v_2 )+ · · · + 2^(v_k )@B2 = a1p1 + a2p2 + a3p3 + a4p4 + 2^(v_1 )+ 2^(v_2 )+ · · · + 2^(v_k ) )┤ (2) with k being a positive integer. Here p1, · · · p4 are odd primes, each 〖v 〗_iis a positive integer and the integral coefficients ai (i = 1, 2, 3, 4) satisfy {█((〖a 〗_1- 〖a 〗_2, 〖a 〗_3, 〖a 〗_4) = 1,@〖a 〗_1 〖a 〗_2< 0, 〖a 〗_3 〖a 〗_4<0,)┤ Moreover it is calculated that the positive integer k ≥ g(〖a 〗_1- 〖a 〗_2, 〖a 〗_3, 〖a 〗_4) where g(〖a 〗_21- 〖a 〗_22, 〖a 〗_23, 〖a 〗_24) = [(log⁡〖G(〖a 〗_21, …, 〖a 〗_24 〗)-log⁡〖F (〖a 〗_21, …, 〖a 〗_24)〗)/log0.975805-84.0285], (3) G(〖a 〗_21, 〖a 〗_22, 〖a 〗_23, 〖a 〗_24) = (min(1/(|a_24 |), 1/(|a_23 |)) - (〖|a〗_(21 )- a_22 |)/(|〖a_23 a〗_24 |) 〖(3B)〗^(-1) ×〖(3B)〗^(-1) (1-0.000001)- 〖(3B)〗^(-1-4), with B = max1≤j≤4(2, |a2j|), and F(a_21, …, a_24) = √(f(a_21)f〖(a〗_22 )) with f(a_2i) = {█(4414.15h (a_21-1)+5.088331 if a_21≠1@59.8411 if a_21=1,)┤ for i = 1, 2, and h(n) =∏_(p|n,p>2)▒(p-1)/(p-2). This result, if without the powers of two, can make up some of the cases excluded in Green and Tao’s paper.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.source.urihttp://hub.hku.hk/bib/B50533769-
dc.subject.lcshNumbers, Prime-
dc.subject.lcshAlgebras, Linear.-
dc.subject.lcshNumber theory.-
dc.titleOn linear equations in primes and powers of two-
dc.typePG_Thesis-
dc.identifier.hkulb5053376-
dc.description.thesisnameDoctor of Philosophy-
dc.description.thesislevelDoctoral-
dc.description.thesisdisciplineMathematics-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b5053376-
dc.date.hkucongregation2013-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats