File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Complex coordinate system as a generalized absorbing boundary condition

TitleComplex coordinate system as a generalized absorbing boundary condition
Authors
Issue Date1997
Citation
Ieee Antennas And Propagation Society, Ap-S International Symposium (Digest), 1997, v. 3, p. 2060-2063 How to Cite?
AbstractThe perfectly matched layer (PML) in Cartesian coordinates is equivalent to solving the wave equation or Maxwell's equations in a complex coordinate system. A closed form solutions that exist in the real coordinate system map to solutions in the complex coordinate system. In the complex coordinate system, the boundaries exist in a complex space, providing absorbing boundary conditions. Hence, this transformation provides a new view of PML in the Cartesian coordinates, clearly showing that a mapping to a complex coordinate system does not induce reflections, explaining why PML works near the corner of a simulation region, and when a dielectric interface, or a metallic surface, extends to the edge of a simulation region.
Persistent Identifierhttp://hdl.handle.net/10722/182866
ISSN

 

DC FieldValueLanguage
dc.contributor.authorChew, WCen_US
dc.contributor.authorJin, JMen_US
dc.contributor.authorMichielssen, Een_US
dc.date.accessioned2013-05-02T05:17:24Z-
dc.date.available2013-05-02T05:17:24Z-
dc.date.issued1997en_US
dc.identifier.citationIeee Antennas And Propagation Society, Ap-S International Symposium (Digest), 1997, v. 3, p. 2060-2063en_US
dc.identifier.issn0272-4693en_US
dc.identifier.urihttp://hdl.handle.net/10722/182866-
dc.description.abstractThe perfectly matched layer (PML) in Cartesian coordinates is equivalent to solving the wave equation or Maxwell's equations in a complex coordinate system. A closed form solutions that exist in the real coordinate system map to solutions in the complex coordinate system. In the complex coordinate system, the boundaries exist in a complex space, providing absorbing boundary conditions. Hence, this transformation provides a new view of PML in the Cartesian coordinates, clearly showing that a mapping to a complex coordinate system does not induce reflections, explaining why PML works near the corner of a simulation region, and when a dielectric interface, or a metallic surface, extends to the edge of a simulation region.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Antennas and Propagation Society, AP-S International Symposium (Digest)en_US
dc.titleComplex coordinate system as a generalized absorbing boundary conditionen_US
dc.typeConference_Paperen_US
dc.identifier.emailChew, WC: wcchew@hku.hken_US
dc.identifier.authorityChew, WC=rp00656en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-0030675096en_US
dc.identifier.volume3en_US
dc.identifier.spage2060en_US
dc.identifier.epage2063en_US
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridChew, WC=36014436300en_US
dc.identifier.scopusauthoridJin, JM=7403588231en_US
dc.identifier.scopusauthoridMichielssen, E=7005196479en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats