File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A Sparse Data Fast Fourier Transform (SDFFT)

TitleA Sparse Data Fast Fourier Transform (SDFFT)
Authors
KeywordsFar-Field Computation
Multilevel Algorithm
Nonuniform Fast Fourier Transform (Nufft)
Parabolic Reflector
Physical Optics
Synthetic Aperture Radar Imaging
Tomography
Issue Date2003
Citation
Ieee Transactions On Antennas And Propagation, 2003, v. 51 n. 11, p. 3161-3170 How to Cite?
AbstractA multilevel algorithm that efficiently Fourier transforms sparse spatial data to sparse spectral data with controllable error is presented. The algorithm termed "sparse data fast fourier transform" (SDFFT) is particularly useful for signal processing applications where only part of the k-space is to be computed - Regardless of whether it is a regular region like an angular section of the Ewald sphere or it consists of completely arbitrary points scattered in the k-space. In addition, like the various nonuniform fast Fourier transforms, the O(N log N) algorithm can deal with a sparse, nonuniform spatial domain. In this paper, the parabolic reflector antenna problem is studied as an example to demonstrate its use in the computation of far-field patterns due to arbitrary aperture antennas and antenna arrays. The algorithm is also promising for various applications such as back-projection tomography, diffraction tomography, and synthetic aperture radar imaging.
Persistent Identifierhttp://hdl.handle.net/10722/182690
ISSN
2015 Impact Factor: 2.053
2015 SCImago Journal Rankings: 2.130
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorAydiner, AAen_US
dc.contributor.authorChew, WCen_US
dc.contributor.authorCui, TJen_US
dc.contributor.authorSong, Jen_US
dc.date.accessioned2013-05-02T05:16:27Z-
dc.date.available2013-05-02T05:16:27Z-
dc.date.issued2003en_US
dc.identifier.citationIeee Transactions On Antennas And Propagation, 2003, v. 51 n. 11, p. 3161-3170en_US
dc.identifier.issn0018-926Xen_US
dc.identifier.urihttp://hdl.handle.net/10722/182690-
dc.description.abstractA multilevel algorithm that efficiently Fourier transforms sparse spatial data to sparse spectral data with controllable error is presented. The algorithm termed "sparse data fast fourier transform" (SDFFT) is particularly useful for signal processing applications where only part of the k-space is to be computed - Regardless of whether it is a regular region like an angular section of the Ewald sphere or it consists of completely arbitrary points scattered in the k-space. In addition, like the various nonuniform fast Fourier transforms, the O(N log N) algorithm can deal with a sparse, nonuniform spatial domain. In this paper, the parabolic reflector antenna problem is studied as an example to demonstrate its use in the computation of far-field patterns due to arbitrary aperture antennas and antenna arrays. The algorithm is also promising for various applications such as back-projection tomography, diffraction tomography, and synthetic aperture radar imaging.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Antennas and Propagationen_US
dc.subjectFar-Field Computationen_US
dc.subjectMultilevel Algorithmen_US
dc.subjectNonuniform Fast Fourier Transform (Nufft)en_US
dc.subjectParabolic Reflectoren_US
dc.subjectPhysical Opticsen_US
dc.subjectSynthetic Aperture Radar Imagingen_US
dc.subjectTomographyen_US
dc.titleA Sparse Data Fast Fourier Transform (SDFFT)en_US
dc.typeArticleen_US
dc.identifier.emailChew, WC: wcchew@hku.hken_US
dc.identifier.authorityChew, WC=rp00656en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1109/TAP.2003.818792en_US
dc.identifier.scopuseid_2-s2.0-0242527336en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0242527336&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume51en_US
dc.identifier.issue11en_US
dc.identifier.spage3161en_US
dc.identifier.epage3170en_US
dc.identifier.isiWOS:000186435300016-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridAydiner, AA=7004153439en_US
dc.identifier.scopusauthoridChew, WC=36014436300en_US
dc.identifier.scopusauthoridCui, TJ=7103095470en_US
dc.identifier.scopusauthoridSong, J=7404788341en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats