File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Numerical accuracy of multipole expansion for 2-D MLFMA

TitleNumerical accuracy of multipole expansion for 2-D MLFMA
Authors
KeywordsAddition Theorem
Error Analysis
Fast Multipole Method
Multilevel Fast Multipole Algorithm (Mlfma)
Issue Date2003
Citation
Ieee Transactions On Antennas And Propagation, 2003, v. 51 n. 8, p. 1883-1890 How to Cite?
AbstractNumerical study of the multipole expansion for the multilevel fast multipole algorithm (MLFMA) is presented. In the numerical implementation of MLFMA, the error comes from three sources: the truncation of the addition theorem; the approximation of the integration; and the aggregation and disaggregation process. These errors are due to the factorization of the Green's function which is the mathematical core of this algorithm. Among the three error sources, we focus on the truncation error in this paper and a new approach of selecting truncation numbers for the addition theorem is proposed. Using this approach, the error prediction and control can be improved for the small buffer sizes and high accuracy requirements.
Persistent Identifierhttp://hdl.handle.net/10722/182684
ISSN
2015 Impact Factor: 2.053
2015 SCImago Journal Rankings: 2.130
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorOhnuki, Sen_US
dc.contributor.authorChew, WCen_US
dc.date.accessioned2013-05-02T05:16:26Z-
dc.date.available2013-05-02T05:16:26Z-
dc.date.issued2003en_US
dc.identifier.citationIeee Transactions On Antennas And Propagation, 2003, v. 51 n. 8, p. 1883-1890en_US
dc.identifier.issn0018-926Xen_US
dc.identifier.urihttp://hdl.handle.net/10722/182684-
dc.description.abstractNumerical study of the multipole expansion for the multilevel fast multipole algorithm (MLFMA) is presented. In the numerical implementation of MLFMA, the error comes from three sources: the truncation of the addition theorem; the approximation of the integration; and the aggregation and disaggregation process. These errors are due to the factorization of the Green's function which is the mathematical core of this algorithm. Among the three error sources, we focus on the truncation error in this paper and a new approach of selecting truncation numbers for the addition theorem is proposed. Using this approach, the error prediction and control can be improved for the small buffer sizes and high accuracy requirements.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Antennas and Propagationen_US
dc.subjectAddition Theoremen_US
dc.subjectError Analysisen_US
dc.subjectFast Multipole Methoden_US
dc.subjectMultilevel Fast Multipole Algorithm (Mlfma)en_US
dc.titleNumerical accuracy of multipole expansion for 2-D MLFMAen_US
dc.typeArticleen_US
dc.identifier.emailChew, WC: wcchew@hku.hken_US
dc.identifier.authorityChew, WC=rp00656en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1109/TAP.2003.815425en_US
dc.identifier.scopuseid_2-s2.0-0042864797en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0042864797&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume51en_US
dc.identifier.issue8en_US
dc.identifier.spage1883en_US
dc.identifier.epage1890en_US
dc.identifier.isiWOS:000184769400020-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridOhnuki, S=7006605105en_US
dc.identifier.scopusauthoridChew, WC=36014436300en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats