File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Monte carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces

TitleMonte carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces
Authors
KeywordsElectromagnetic Scattering
Numerical Analysis
Issue Date1997
Citation
Ieee Transactions On Antennas And Propagation, 1997, v. 45 n. 2, p. 235-245 How to Cite?
Abstract-The fast multipole method fast Fourier transform (FMM-FFT) method is developed to compute the scattering of an electromagnetic wave from a two-dimensional (2-D) rough surface. The resulting algorithm computes a matrix-vector multiply in O(NlogN) operations. This algorithm is shown to be more efficient than another O(NlogN) algorithm, the multilevel fast multipole algorithm (MLFMA), for surfaces of small height. For surfaces with larger roughness, the MLFMA is found to be more efficient. Using the MLFMA, Monte Carlo simulations are carried out to compute the statistical properties of the electromagnetic scattering from 2-D random rough surfaces using a workstation. For the rougher surface, backscattering enhancement is clearly observable as a pronounced peak in the backscattering direction of the computed bistatic scattering coefficient. For the smoother surface, the Monte Carlo results compare well with the results of the approximate Kirchhoff theory. © 1997 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/182575
ISSN
2015 Impact Factor: 2.053
2015 SCImago Journal Rankings: 2.130
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorWagner, RLen_US
dc.contributor.authorSong, Jen_US
dc.contributor.authorChew, WCen_US
dc.date.accessioned2013-05-02T05:15:55Z-
dc.date.available2013-05-02T05:15:55Z-
dc.date.issued1997en_US
dc.identifier.citationIeee Transactions On Antennas And Propagation, 1997, v. 45 n. 2, p. 235-245en_US
dc.identifier.issn0018-926Xen_US
dc.identifier.urihttp://hdl.handle.net/10722/182575-
dc.description.abstract-The fast multipole method fast Fourier transform (FMM-FFT) method is developed to compute the scattering of an electromagnetic wave from a two-dimensional (2-D) rough surface. The resulting algorithm computes a matrix-vector multiply in O(NlogN) operations. This algorithm is shown to be more efficient than another O(NlogN) algorithm, the multilevel fast multipole algorithm (MLFMA), for surfaces of small height. For surfaces with larger roughness, the MLFMA is found to be more efficient. Using the MLFMA, Monte Carlo simulations are carried out to compute the statistical properties of the electromagnetic scattering from 2-D random rough surfaces using a workstation. For the rougher surface, backscattering enhancement is clearly observable as a pronounced peak in the backscattering direction of the computed bistatic scattering coefficient. For the smoother surface, the Monte Carlo results compare well with the results of the approximate Kirchhoff theory. © 1997 IEEE.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Antennas and Propagationen_US
dc.subjectElectromagnetic Scatteringen_US
dc.subjectNumerical Analysisen_US
dc.titleMonte carlo simulation of electromagnetic scattering from two-dimensional random rough surfacesen_US
dc.typeArticleen_US
dc.identifier.emailChew, WC: wcchew@hku.hken_US
dc.identifier.authorityChew, WC=rp00656en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1109/8.560342en_US
dc.identifier.scopuseid_2-s2.0-0031076082en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0031076082&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume45en_US
dc.identifier.issue2en_US
dc.identifier.spage235en_US
dc.identifier.epage245en_US
dc.identifier.isiWOS:A1997WG06200006-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridWagner, RL=55451873000en_US
dc.identifier.scopusauthoridSong, J=7404788341en_US
dc.identifier.scopusauthoridChew, WC=36014436300en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats