File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades

TitleNitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades
Authors
Issue Date2013
PublisherNature Publishing Group.
Citation
The ISME Journal, 2013, v. 7 n. 6, p. 1248-1251 How to Cite?
AbstractMany reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont's response to changing environmental conditions. For example, corals hosting Symbiodinium from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other Symbiodinium types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic (15)N and (13)C in the coral Acropora tenuis experimentally infected with either clade C (sub-type C1) or D Symbiodinium at 28 and 30 degrees C. We show that at 28 degrees C, C1 holobionts acquired 22% more (15)N than clade D. However, at 30 degrees C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D in hospite via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.The ISME Journal advance online publication, 14 February 2013; doi:10.1038/ismej.2013.12.
Persistent Identifierhttp://hdl.handle.net/10722/181326
ISSN
2015 Impact Factor: 9.328
2015 SCImago Journal Rankings: 6.178
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorBaker, DM-
dc.contributor.authorAndras, JP-
dc.contributor.authorJordán-Garza, AG-
dc.contributor.authorFogel, ML-
dc.date.accessioned2013-02-26T07:38:53Z-
dc.date.available2013-02-26T07:38:53Z-
dc.date.issued2013-
dc.identifier.citationThe ISME Journal, 2013, v. 7 n. 6, p. 1248-1251-
dc.identifier.issn1751-7362-
dc.identifier.urihttp://hdl.handle.net/10722/181326-
dc.description.abstractMany reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont's response to changing environmental conditions. For example, corals hosting Symbiodinium from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other Symbiodinium types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic (15)N and (13)C in the coral Acropora tenuis experimentally infected with either clade C (sub-type C1) or D Symbiodinium at 28 and 30 degrees C. We show that at 28 degrees C, C1 holobionts acquired 22% more (15)N than clade D. However, at 30 degrees C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D in hospite via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.The ISME Journal advance online publication, 14 February 2013; doi:10.1038/ismej.2013.12.-
dc.languageeng-
dc.publisherNature Publishing Group.-
dc.relation.ispartofThe ISME Journal-
dc.titleNitrate competition in a coral symbiosis varies with temperature among Symbiodinium cladesen_US
dc.typeArticleen_US
dc.identifier.emailBaker, DM: dmbaker@hku.hk-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1038/ismej.2013.12-
dc.identifier.pmid23407311-
dc.identifier.scopuseid_2-s2.0-84878314084-
dc.identifier.hkuros218918-
dc.identifier.isiWOS:000319333600018-
dc.publisher.placeUnited Kingdom-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats