File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: 1N expansion for the degenerate Anderson model in the mixed-valence regime
  • Basic View
  • Metadata View
  • XML View
Title1N expansion for the degenerate Anderson model in the mixed-valence regime
 
AuthorsZhang, FC1
Lee, TK1
 
Issue Date1983
 
PublisherAmerican Physical Society. The Journal's web site is located at http://prb.aps.org/
 
CitationPhysical Review B, 1983, v. 28 n. 1, p. 33-38 [How to Cite?]
DOI: http://dx.doi.org/10.1103/PhysRevB.28.33
 
AbstractThe 1N expansion method for the degenerate Anderson model is formulated. N is the degeneracy factor of one of the f-electron configurations. Various ground-state properties are calculated. Excellent agreement with the result of Bethe ansatz for N=6 is shown. The rate of convergence of the series is analyzed. The merit and inadequacy of the method are discussed. At zero temperature the ratio of the magnetic susceptibility and the specific-heat linear coefficient is shown to lie within a range of 1 and 1+(N-1)-1. © 1983 The American Physical Society.
 
ISSN0163-1829
 
DOIhttp://dx.doi.org/10.1103/PhysRevB.28.33
 
DC FieldValue
dc.contributor.authorZhang, FC
 
dc.contributor.authorLee, TK
 
dc.date.accessioned2012-11-26T08:48:01Z
 
dc.date.available2012-11-26T08:48:01Z
 
dc.date.issued1983
 
dc.description.abstractThe 1N expansion method for the degenerate Anderson model is formulated. N is the degeneracy factor of one of the f-electron configurations. Various ground-state properties are calculated. Excellent agreement with the result of Bethe ansatz for N=6 is shown. The rate of convergence of the series is analyzed. The merit and inadequacy of the method are discussed. At zero temperature the ratio of the magnetic susceptibility and the specific-heat linear coefficient is shown to lie within a range of 1 and 1+(N-1)-1. © 1983 The American Physical Society.
 
dc.description.naturelink_to_subscribed_fulltext
 
dc.identifier.citationPhysical Review B, 1983, v. 28 n. 1, p. 33-38 [How to Cite?]
DOI: http://dx.doi.org/10.1103/PhysRevB.28.33
 
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevB.28.33
 
dc.identifier.epage38
 
dc.identifier.issn0163-1829
 
dc.identifier.issue1
 
dc.identifier.scopuseid_2-s2.0-0642263916
 
dc.identifier.spage33
 
dc.identifier.urihttp://hdl.handle.net/10722/174893
 
dc.identifier.volume28
 
dc.languageeng
 
dc.publisherAmerican Physical Society. The Journal's web site is located at http://prb.aps.org/
 
dc.publisher.placeUnited States
 
dc.relation.ispartofPhysical Review B
 
dc.title1N expansion for the degenerate Anderson model in the mixed-valence regime
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Zhang, FC</contributor.author>
<contributor.author>Lee, TK</contributor.author>
<date.accessioned>2012-11-26T08:48:01Z</date.accessioned>
<date.available>2012-11-26T08:48:01Z</date.available>
<date.issued>1983</date.issued>
<identifier.citation>Physical Review B, 1983, v. 28 n. 1, p. 33-38</identifier.citation>
<identifier.issn>0163-1829</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/174893</identifier.uri>
<description.abstract>The 1N expansion method for the degenerate Anderson model is formulated. N is the degeneracy factor of one of the f-electron configurations. Various ground-state properties are calculated. Excellent agreement with the result of Bethe ansatz for N=6 is shown. The rate of convergence of the series is analyzed. The merit and inadequacy of the method are discussed. At zero temperature the ratio of the magnetic susceptibility and the specific-heat linear coefficient is shown to lie within a range of 1 and 1+(N-1)-1. &#169; 1983 The American Physical Society.</description.abstract>
<language>eng</language>
<publisher>American Physical Society. The Journal&apos;s web site is located at http://prb.aps.org/</publisher>
<relation.ispartof>Physical Review B</relation.ispartof>
<title>1N expansion for the degenerate Anderson model in the mixed-valence regime</title>
<type>Article</type>
<description.nature>link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1103/PhysRevB.28.33</identifier.doi>
<identifier.scopus>eid_2-s2.0-0642263916</identifier.scopus>
<identifier.volume>28</identifier.volume>
<identifier.issue>1</identifier.issue>
<identifier.spage>33</identifier.spage>
<identifier.epage>38</identifier.epage>
<publisher.place>United States</publisher.place>
</item>
Author Affiliations
  1. Virginia Polytechnic Institute and State University