File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Median regression for longitudinal data

TitleMedian regression for longitudinal data
Authors
Issue Date2003
PublisherJohn Wiley & Sons Ltd. The Journal's web site is located at http://www.interscience.wiley.com/jpages/0277-6715/
Citation
Statistics in Medicine, 2003, v. 22 n. 23, p. 3655-3669 How to Cite?
AbstractWe review and compare three estimators of median regression in linear models with longitudinal data. The estimators are constructed based on well-known ideas of weighting, decorrelating, and the working assumption of independence. Both asymptotic efficiency calculations and finite-sample Monte Carlo studies are used to assess the performance of these estimators. We find that their relative performances depend on the nature of covariates. The estimator under the working assumption of independence is computationally simple and yet has good relative performance when the covariates are invariant over time or when the within-subject correlations are small. Its relative performance in finite samples is also found to be more favourable than suggested by the asymptotic comparisons. Copyright © 2003 John Wiley & Sons, Ltd.
Persistent Identifierhttp://hdl.handle.net/10722/172407
ISSN
2015 Impact Factor: 1.533
2015 SCImago Journal Rankings: 1.811
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorHe, Xen_US
dc.contributor.authorFu, Ben_US
dc.contributor.authorFung, WKen_US
dc.date.accessioned2012-10-30T06:22:22Z-
dc.date.available2012-10-30T06:22:22Z-
dc.date.issued2003en_US
dc.identifier.citationStatistics in Medicine, 2003, v. 22 n. 23, p. 3655-3669en_US
dc.identifier.issn0277-6715en_US
dc.identifier.urihttp://hdl.handle.net/10722/172407-
dc.description.abstractWe review and compare three estimators of median regression in linear models with longitudinal data. The estimators are constructed based on well-known ideas of weighting, decorrelating, and the working assumption of independence. Both asymptotic efficiency calculations and finite-sample Monte Carlo studies are used to assess the performance of these estimators. We find that their relative performances depend on the nature of covariates. The estimator under the working assumption of independence is computationally simple and yet has good relative performance when the covariates are invariant over time or when the within-subject correlations are small. Its relative performance in finite samples is also found to be more favourable than suggested by the asymptotic comparisons. Copyright © 2003 John Wiley & Sons, Ltd.en_US
dc.languageengen_US
dc.publisherJohn Wiley & Sons Ltd. The Journal's web site is located at http://www.interscience.wiley.com/jpages/0277-6715/en_US
dc.relation.ispartofStatistics in Medicineen_US
dc.rightsStatistics in Medicine. Copyright © John Wiley & Sons Ltd.-
dc.subject.meshAnalgesics - Pharmacology - Therapeutic Useen_US
dc.subject.meshFemaleen_US
dc.subject.meshHumansen_US
dc.subject.meshLabor, Obstetric - Physiologyen_US
dc.subject.meshLinear Modelsen_US
dc.subject.meshLongitudinal Studiesen_US
dc.subject.meshPain - Drug Therapyen_US
dc.subject.meshPregnancyen_US
dc.subject.meshWeight Lifting - Physiologyen_US
dc.titleMedian regression for longitudinal dataen_US
dc.typeArticleen_US
dc.identifier.emailFung, WK: wingfung@hku.hken_US
dc.identifier.authorityFung, WK=rp00696en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1002/sim.1581en_US
dc.identifier.pmid14652867-
dc.identifier.scopuseid_2-s2.0-0345329164en_US
dc.identifier.hkuros90699-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0345329164&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume22en_US
dc.identifier.issue23en_US
dc.identifier.spage3655en_US
dc.identifier.epage3669en_US
dc.identifier.isiWOS:000186792500007-
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridHe, X=7404407842en_US
dc.identifier.scopusauthoridFu, B=35957954300en_US
dc.identifier.scopusauthoridFung, WK=13310399400en_US
dc.identifier.citeulike7688653-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats