File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A note on local influence based on normal curvature

TitleA note on local influence based on normal curvature
Authors
KeywordsLocal Influence
Normal Curvature
Scale Invariance
Issue Date1997
PublisherWiley-Blackwell Publishing Ltd. The Journal's web site is located at http://www.blackwellpublishing.com/journals/RSSB
Citation
Journal of the Royal Statistical Society. Series B: Statistical Methodology, 1997, v. 59 n. 4, p. 839-843 How to Cite?
AbstractObject functions other than the likelihood displacement, such as a parameter estimate or a test statistic, can also be used in local influence analysis. The normal curvatures of these object functions have been studied in situations where the slopes were non-zero. In these situations, we show that the normal curvature is not scale invariant and thus ambiguous conclusions will be drawn. Comments on the application of the general normal curvature formula are presented. © 1997 Royal Statistical Society.
Persistent Identifierhttp://hdl.handle.net/10722/172364
ISSN
2015 Impact Factor: 4.222
2015 SCImago Journal Rankings: 7.429
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorFung, WKen_US
dc.contributor.authorKwan, CWen_US
dc.date.accessioned2012-10-30T06:22:09Z-
dc.date.available2012-10-30T06:22:09Z-
dc.date.issued1997en_US
dc.identifier.citationJournal of the Royal Statistical Society. Series B: Statistical Methodology, 1997, v. 59 n. 4, p. 839-843en_US
dc.identifier.issn1369-7412en_US
dc.identifier.urihttp://hdl.handle.net/10722/172364-
dc.description.abstractObject functions other than the likelihood displacement, such as a parameter estimate or a test statistic, can also be used in local influence analysis. The normal curvatures of these object functions have been studied in situations where the slopes were non-zero. In these situations, we show that the normal curvature is not scale invariant and thus ambiguous conclusions will be drawn. Comments on the application of the general normal curvature formula are presented. © 1997 Royal Statistical Society.en_US
dc.languageengen_US
dc.publisherWiley-Blackwell Publishing Ltd. The Journal's web site is located at http://www.blackwellpublishing.com/journals/RSSBen_US
dc.relation.ispartofJournal of the Royal Statistical Society. Series B: Statistical Methodologyen_US
dc.subjectLocal Influenceen_US
dc.subjectNormal Curvatureen_US
dc.subjectScale Invarianceen_US
dc.titleA note on local influence based on normal curvatureen_US
dc.typeArticleen_US
dc.identifier.emailFung, WK: wingfung@hku.hken_US
dc.identifier.authorityFung, WK=rp00696en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1111/1467-9868.00100-
dc.identifier.scopuseid_2-s2.0-0000258519en_US
dc.identifier.hkuros34137-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0000258519&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume59en_US
dc.identifier.issue4en_US
dc.identifier.spage839en_US
dc.identifier.epage843en_US
dc.identifier.isiWOS:A1997XZ61500007-
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridFung, WK=13310399400en_US
dc.identifier.scopusauthoridKwan, CW=7201421220en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats