File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Theoretical study on dynamic process of conical bubble sonoluminescence

TitleTheoretical study on dynamic process of conical bubble sonoluminescence
圓錐泡聲致發光氣泡動力學過程的理論分析
Authors
KeywordsAdiabatic Collapse (絕熱壓縮)
Conical Bubble Sonoluminescence (圓錐泡聲致發光)
Pressure (壓強)
Radius Of Collapsing Bubble (壓縮半徑)
Velocity Of Collapsing Bubble (塌陷速度方程)
Issue Date2007
PublisherScience Press (科學出版社)
Citation
Chinese Journal Of Theoretical And Applied Mechanics, 2007, v. 39 n. 6, p. 727-731 How to Cite?
力學學報, 2007, v. 39 n. 6, p. 727-731 How to Cite?
AbstractThe dynamic process of conical bubble sonoluminescence is discussed based on the adiabatic process. The equations for the velocity of bubble collapse, the pressure and temperature within the bubble are derived. Results show that the velocity of collapsing bubble increases with the decrease of the radius of collapsing bubble first in an approximately linear manner, then the maximal velocity of collapsing bubble is reached, subsequently, the velocity of collapsing bubble quickly decreases. Assuming that the initial pressure is equal to 1000 Pa, the maximal value of the velocity of bubble collapse is 5.8 m/s, the minimum radius of the bubble is 1.37 cm, then the huge pressure of 4.5 × 10 5 Pa, the collapsing temperature of above 37000 K, and the maximal energy of about 0.02 J can be achieved. The equations obtained in this paper could explain the phenomena of experiment. Finally, results show that the initial pressure within the bubble has important effects on the final extreme conditions.
在絕熱壓縮模型的基礎上,詳細討論了圓錐泡聲致發光中氣泡運動的動力學過程,得到了氣泡塌陷速度方程、氣泡內壓強方程以及溫度方程.結果顯示在氣泡進入圓錐腔的初始階段,氣泡的塌陷速度隨著壓縮半徑的不斷減小近似線性地增加;然后隨著壓縮半徑的進一步減小,氣泡塌陷的加速度逐漸減小;當氣泡塌陷速度達到最大值后,隨著氣泡壓縮半徑的進一步減小,塌陷速度迅速下降至零.在假設初始氣壓為1000Pa的基礎上,理論分析得到氣泡的最高塌陷速度可以達到5.8m/s;氣泡的最小壓縮半徑可以達到1.37cm,相應的氣泡內極限壓強超過4.5×10~5Pa,極限溫度超過3150K,而液流能夠提供給氣泡的能量達到0.02J.理論推導得到的結果可以比較好地用來解釋實驗中的現象.最后分析得到氣泡內的初始氣壓對氣泡所能達到的極端條件有著重要的影響.
Persistent Identifierhttp://hdl.handle.net/10722/168270
ISSN
2015 SCImago Journal Rankings: 0.396
References

 

DC FieldValueLanguage
dc.contributor.authorHe, Sen_US
dc.contributor.authorHa, Jen_US
dc.contributor.authorLi, Xen_US
dc.contributor.authorLi, Qen_US
dc.contributor.authorWang, Len_US
dc.date.accessioned2012-10-08T03:16:53Z-
dc.date.available2012-10-08T03:16:53Z-
dc.date.issued2007en_US
dc.identifier.citationChinese Journal Of Theoretical And Applied Mechanics, 2007, v. 39 n. 6, p. 727-731en_US
dc.identifier.citation力學學報, 2007, v. 39 n. 6, p. 727-731-
dc.identifier.issn0459-1879en_US
dc.identifier.urihttp://hdl.handle.net/10722/168270-
dc.description.abstractThe dynamic process of conical bubble sonoluminescence is discussed based on the adiabatic process. The equations for the velocity of bubble collapse, the pressure and temperature within the bubble are derived. Results show that the velocity of collapsing bubble increases with the decrease of the radius of collapsing bubble first in an approximately linear manner, then the maximal velocity of collapsing bubble is reached, subsequently, the velocity of collapsing bubble quickly decreases. Assuming that the initial pressure is equal to 1000 Pa, the maximal value of the velocity of bubble collapse is 5.8 m/s, the minimum radius of the bubble is 1.37 cm, then the huge pressure of 4.5 × 10 5 Pa, the collapsing temperature of above 37000 K, and the maximal energy of about 0.02 J can be achieved. The equations obtained in this paper could explain the phenomena of experiment. Finally, results show that the initial pressure within the bubble has important effects on the final extreme conditions.en_US
dc.description.abstract在絕熱壓縮模型的基礎上,詳細討論了圓錐泡聲致發光中氣泡運動的動力學過程,得到了氣泡塌陷速度方程、氣泡內壓強方程以及溫度方程.結果顯示在氣泡進入圓錐腔的初始階段,氣泡的塌陷速度隨著壓縮半徑的不斷減小近似線性地增加;然后隨著壓縮半徑的進一步減小,氣泡塌陷的加速度逐漸減小;當氣泡塌陷速度達到最大值后,隨著氣泡壓縮半徑的進一步減小,塌陷速度迅速下降至零.在假設初始氣壓為1000Pa的基礎上,理論分析得到氣泡的最高塌陷速度可以達到5.8m/s;氣泡的最小壓縮半徑可以達到1.37cm,相應的氣泡內極限壓強超過4.5×10~5Pa,極限溫度超過3150K,而液流能夠提供給氣泡的能量達到0.02J.理論推導得到的結果可以比較好地用來解釋實驗中的現象.最后分析得到氣泡內的初始氣壓對氣泡所能達到的極端條件有著重要的影響.-
dc.languageengen_US
dc.publisherScience Press (科學出版社)-
dc.relation.ispartofChinese Journal of Theoretical and Applied Mechanicsen_US
dc.relation.ispartof力學學報-
dc.subjectAdiabatic Collapse (絕熱壓縮)en_US
dc.subjectConical Bubble Sonoluminescence (圓錐泡聲致發光)en_US
dc.subjectPressure (壓強)en_US
dc.subjectRadius Of Collapsing Bubble (壓縮半徑)en_US
dc.subjectVelocity Of Collapsing Bubble (塌陷速度方程)en_US
dc.titleTheoretical study on dynamic process of conical bubble sonoluminescenceen_US
dc.title圓錐泡聲致發光氣泡動力學過程的理論分析-
dc.typeArticleen_US
dc.identifier.emailLi, X:xuechenl@hku.hken_US
dc.identifier.authorityLi, X=rp00742en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-37349030765en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-37349030765&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume39en_US
dc.identifier.issue6en_US
dc.identifier.spage727en_US
dc.identifier.epage731en_US
dc.identifier.scopusauthoridHe, S=7402691230en_US
dc.identifier.scopusauthoridHa, J=7202103285en_US
dc.identifier.scopusauthoridLi, X=24168958800en_US
dc.identifier.scopusauthoridLi, Q=7405861869en_US
dc.identifier.scopusauthoridWang, L=7409124261en_US
dc.customcontrol.immutablecsl 130805-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats