File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A theoretical study of potassium cation-glycine (K+-Gly) interactions

TitleA theoretical study of potassium cation-glycine (K+-Gly) interactions
Authors
KeywordsDensity Functional Theory
Electrostatic Interaction
Glycine
Metal-Ligand Interaction
Potassium Ion
Issue Date2002
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/theochem
Citation
Journal Of Molecular Structure: Theochem, 2002, v. 588, p. 9-16 How to Cite?
AbstractThe structures and binding affinities of potassium cation (K+) bound complexes of glycine (Gly) are established using a B3-LYP density functional based energetic protocol 'EP(K+)'. Ten stable isomers on the potential energy surface have been located and the most stable mode of binding involves a bidentate interaction between the cation with O=C and -OH. The dipole moment of the glycine ligand plays a dominant role in governing the relative stability of binding modes, while the effect of ligand polarizability plays a less important role. We found that the stabilization energies (raw interaction energies) of these complexes can be well approximated by a linear function of the 'dipole interaction parameter' and 'polarizability interaction parameter'. © 2002 Elsevier Science B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/167768
ISSN
2012 Impact Factor: 1.371
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorWong, CHSen_US
dc.contributor.authorSiu, FMen_US
dc.contributor.authorMa, NLen_US
dc.contributor.authorTsang, CWen_US
dc.date.accessioned2012-10-08T03:11:19Z-
dc.date.available2012-10-08T03:11:19Z-
dc.date.issued2002en_US
dc.identifier.citationJournal Of Molecular Structure: Theochem, 2002, v. 588, p. 9-16en_US
dc.identifier.issn0166-1280en_US
dc.identifier.urihttp://hdl.handle.net/10722/167768-
dc.description.abstractThe structures and binding affinities of potassium cation (K+) bound complexes of glycine (Gly) are established using a B3-LYP density functional based energetic protocol 'EP(K+)'. Ten stable isomers on the potential energy surface have been located and the most stable mode of binding involves a bidentate interaction between the cation with O=C and -OH. The dipole moment of the glycine ligand plays a dominant role in governing the relative stability of binding modes, while the effect of ligand polarizability plays a less important role. We found that the stabilization energies (raw interaction energies) of these complexes can be well approximated by a linear function of the 'dipole interaction parameter' and 'polarizability interaction parameter'. © 2002 Elsevier Science B.V. All rights reserved.en_US
dc.languageengen_US
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/theochemen_US
dc.relation.ispartofJournal of Molecular Structure: THEOCHEMen_US
dc.subjectDensity Functional Theoryen_US
dc.subjectElectrostatic Interactionen_US
dc.subjectGlycineen_US
dc.subjectMetal-Ligand Interactionen_US
dc.subjectPotassium Ionen_US
dc.titleA theoretical study of potassium cation-glycine (K+-Gly) interactionsen_US
dc.typeArticleen_US
dc.identifier.emailSiu, FM:fmsiu@hku.hken_US
dc.identifier.authoritySiu, FM=rp00776en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/S0166-1280(02)00083-0en_US
dc.identifier.scopuseid_2-s2.0-0037178502en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0037178502&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume588en_US
dc.identifier.spage9en_US
dc.identifier.epage16en_US
dc.identifier.isiWOS:000177068900002-
dc.publisher.placeNetherlandsen_US
dc.identifier.scopusauthoridWong, CHS=36862845500en_US
dc.identifier.scopusauthoridSiu, FM=6701518489en_US
dc.identifier.scopusauthoridMa, NL=7103357185en_US
dc.identifier.scopusauthoridTsang, CW=7202935952en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats