File Download
 
 
Supplementary

Conference Paper: In vivo chromium-enhanced MRI of normal and injured retinas
  • Basic View
  • Metadata View
  • XML View
TitleIn vivo chromium-enhanced MRI of normal and injured retinas
 
AuthorsChan, KC
Fan, S
Zhou, IY
Wu, EX
 
Issue Date2012
 
PublisherInternational Society of Magnetic Resonance in Medicine.
 
CitationThe 20th Annual Meeting & Exihibition of the International Society of Magnetic Resonance in Medicine (ISMRM 2012), Melbourne, Australia, 5-11 May 2012. In Proceedings of the 20th ISMRM, 2012, no. 0890 [How to Cite?]
 
AbstractChromium (Cr) has been used histologically to stabilize lipid fractions in the retina, and is suggested to enhance oxidizable lipids in brain MRI. This study explored the feasibility, sensitivity and specificity of in vivo chromium-enhanced MRI (CrMRI) of retinal lipids, by determining its spatiotemporal profiles and toxic effect after intravitreal Cr(VI) injection to normal and injured adult rats. One day after 3£gL Cr(VI) administration at 1mM to 100mM, the normal retina exhibited a dose-dependent increase in T1-weighted hyperintensity until 50mM. Time-dependently, significant T1-weighted hyperintensity persisted up to 2 weeks after 10mM Cr(VI) administration. While CrMRI demonstrated reduced Cr enhancement in hypoxic-ischemic-injured retina, 3D-CrMRI of ex vivo normal eyes at isotropic 50£gm resolution showed at least 5 alternating bands across retinal layers, with the outermost layer being the brightest. This agreed with histology indicating alternating lipid contents with the highest level in the photoreceptor layer of the outer retina. While Cr(VI) reduction may induce oxidative stress and depolymerize microtubules, manganese-enhanced MRI after CrMRI showed a dose-dependent effect of Cr toxicity on Mn uptake and axonal transport along the visual pathway. These results potentiated longitudinal CrMRI studies on retinal lipid metabolism upon further optimization of Cr doses with visual cell viability.
 
DescriptionTheme: Adapting MR in a Changing World
Traditional Poster Session - Neuro A: Animal Models - Stroke: no. 0890
 
DC FieldValue
dc.contributor.authorChan, KC
 
dc.contributor.authorFan, S
 
dc.contributor.authorZhou, IY
 
dc.contributor.authorWu, EX
 
dc.date.accessioned2012-09-20T08:16:11Z
 
dc.date.available2012-09-20T08:16:11Z
 
dc.date.issued2012
 
dc.description.abstractChromium (Cr) has been used histologically to stabilize lipid fractions in the retina, and is suggested to enhance oxidizable lipids in brain MRI. This study explored the feasibility, sensitivity and specificity of in vivo chromium-enhanced MRI (CrMRI) of retinal lipids, by determining its spatiotemporal profiles and toxic effect after intravitreal Cr(VI) injection to normal and injured adult rats. One day after 3£gL Cr(VI) administration at 1mM to 100mM, the normal retina exhibited a dose-dependent increase in T1-weighted hyperintensity until 50mM. Time-dependently, significant T1-weighted hyperintensity persisted up to 2 weeks after 10mM Cr(VI) administration. While CrMRI demonstrated reduced Cr enhancement in hypoxic-ischemic-injured retina, 3D-CrMRI of ex vivo normal eyes at isotropic 50£gm resolution showed at least 5 alternating bands across retinal layers, with the outermost layer being the brightest. This agreed with histology indicating alternating lipid contents with the highest level in the photoreceptor layer of the outer retina. While Cr(VI) reduction may induce oxidative stress and depolymerize microtubules, manganese-enhanced MRI after CrMRI showed a dose-dependent effect of Cr toxicity on Mn uptake and axonal transport along the visual pathway. These results potentiated longitudinal CrMRI studies on retinal lipid metabolism upon further optimization of Cr doses with visual cell viability.
 
dc.description.naturelink_to_OA_fulltext
 
dc.descriptionTheme: Adapting MR in a Changing World
 
dc.descriptionTraditional Poster Session - Neuro A: Animal Models - Stroke: no. 0890
 
dc.description.otherThe 20th Annual Meeting & Exihibition of the International Society of Magnetic Resonance in Medicine (ISMRM 2012), Melbourne, Australia, 5-11 May 2012. In Proceedings of the 20th ISMRM, 2012, no. 0890
 
dc.identifier.citationThe 20th Annual Meeting & Exihibition of the International Society of Magnetic Resonance in Medicine (ISMRM 2012), Melbourne, Australia, 5-11 May 2012. In Proceedings of the 20th ISMRM, 2012, no. 0890 [How to Cite?]
 
dc.identifier.hkuros207484
 
dc.identifier.urihttp://hdl.handle.net/10722/165195
 
dc.languageeng
 
dc.publisherInternational Society of Magnetic Resonance in Medicine.
 
dc.publisher.placeAustralia
 
dc.relation.ispartofProceedings of the 20th Annual Meeting of the International Society of Magnetic Resonance in Medicine, ISMRM 2012
 
dc.titleIn vivo chromium-enhanced MRI of normal and injured retinas
 
dc.typeConference_Paper
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Chan, KC</contributor.author>
<contributor.author>Fan, S</contributor.author>
<contributor.author>Zhou, IY</contributor.author>
<contributor.author>Wu, EX</contributor.author>
<date.accessioned>2012-09-20T08:16:11Z</date.accessioned>
<date.available>2012-09-20T08:16:11Z</date.available>
<date.issued>2012</date.issued>
<identifier.citation>The 20th Annual Meeting &amp; Exihibition of the International Society of Magnetic Resonance in Medicine (ISMRM 2012), Melbourne, Australia, 5-11 May 2012. In Proceedings of the 20th ISMRM, 2012, no. 0890</identifier.citation>
<identifier.uri>http://hdl.handle.net/10722/165195</identifier.uri>
<description>Theme: Adapting MR in a Changing World</description>
<description>Traditional Poster Session - Neuro A: Animal Models - Stroke: no. 0890</description>
<description.abstract>Chromium (Cr) has been used histologically to stabilize lipid fractions in the retina, and is suggested to enhance oxidizable lipids in brain MRI. This study explored the feasibility, sensitivity and specificity of in vivo chromium-enhanced MRI (CrMRI) of retinal lipids, by determining its spatiotemporal profiles and toxic effect after intravitreal Cr(VI) injection to normal and injured adult rats. One day after 3&#163;gL Cr(VI) administration at 1mM to 100mM, the normal retina exhibited a dose-dependent increase in T1-weighted hyperintensity until 50mM. Time-dependently, significant T1-weighted hyperintensity persisted up to 2 weeks after 10mM Cr(VI) administration. While CrMRI demonstrated reduced Cr enhancement in hypoxic-ischemic-injured retina, 3D-CrMRI of ex vivo normal eyes at isotropic 50&#163;gm resolution showed at least 5 alternating bands across retinal layers, with the outermost layer being the brightest. This agreed with histology indicating alternating lipid contents with the highest level in the photoreceptor layer of the outer retina. While Cr(VI) reduction may induce oxidative stress and depolymerize microtubules, manganese-enhanced MRI after CrMRI showed a dose-dependent effect of Cr toxicity on Mn uptake and axonal transport along the visual pathway. These results potentiated longitudinal CrMRI studies on retinal lipid metabolism upon further optimization of Cr doses with visual cell viability.</description.abstract>
<language>eng</language>
<publisher>International Society of Magnetic Resonance in Medicine.</publisher>
<relation.ispartof>Proceedings of the 20th Annual Meeting of the International Society of Magnetic Resonance in Medicine, ISMRM 2012</relation.ispartof>
<title>In vivo chromium-enhanced MRI of normal and injured retinas</title>
<type>Conference_Paper</type>
<description.nature>link_to_OA_fulltext</description.nature>
<identifier.hkuros>207484</identifier.hkuros>
<publisher.place>Australia</publisher.place>
<description.other>The 20th Annual Meeting &amp; Exihibition of the International Society of Magnetic Resonance in Medicine (ISMRM 2012), Melbourne, Australia, 5-11 May 2012. In Proceedings of the 20th ISMRM, 2012, no. 0890</description.other>
<bitstream.url>http://hub.hku.hk/bitstream/10722/165195/1/re01.htm</bitstream.url>
</item>