File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jweia.2008.01.010
- Scopus: eid_2-s2.0-43749104093
- WOS: WOS:000257043300006
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Interference effects on wind loading of a row of closely spaced tall buildings
Title | Interference effects on wind loading of a row of closely spaced tall buildings |
---|---|
Authors | |
Keywords | Channeling Interference Effect Sheltering Wind Loads Wind Pressure Wind Tunnel Testing |
Issue Date | 2008 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/jweia |
Citation | Journal Of Wind Engineering And Industrial Aerodynamics, 2008, v. 96 n. 5, p. 562-583 How to Cite? |
Abstract | Interference effects on a row of square-plan tall buildings arranged in close proximity are investigated with wind tunnel experiments. Wind forces and moments on each building in the row are measured with the base balance under different wind incidence angles and different separation distances between buildings. As a result of sheltering, inner buildings inside the row are found to experience much reduced wind load components acting along direction of the row (x) at most wind angles, as compared to the isolated building situation. However, these load components may exhibit phenomena of upwind-acting force and even negative drag force. Increase in x-direction wind loads is observed on the upwind edge building when wind blows at an oblique angle to the row. Other interference effects on y-direction wind loads and torsion are described. Pressure measurements on building walls and numerical computation of wind flow are carried out at some flow cases to explore the interference mechanisms. At wind angle around 30° to the row, wind is visualized to flow through the narrow building gaps at high speeds, resulting in highly negative pressure on associated building walls. This negative pressure and the single-wake behavior of flow over the row of buildings provide explanations for the observed interference effects. Interference on fluctuating wind loads is also investigated. Across-wind load fluctuations are much smaller than the isolated building case with the disappearance of vortex shedding peak in the load spectra. Buildings in a row thus do not exhibit resonant across-wind response at reduced velocities around 10 as an isolated square-plan tall building. © 2008 Elsevier Ltd. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/150452 |
ISSN | 2023 Impact Factor: 4.2 2023 SCImago Journal Rankings: 1.305 |
ISI Accession Number ID | |
References | |
Errata |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lam, KM | en_US |
dc.contributor.author | H Leung, MY | en_US |
dc.contributor.author | Zhao, JG | en_US |
dc.date.accessioned | 2012-06-26T06:04:53Z | - |
dc.date.available | 2012-06-26T06:04:53Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.citation | Journal Of Wind Engineering And Industrial Aerodynamics, 2008, v. 96 n. 5, p. 562-583 | en_US |
dc.identifier.issn | 0167-6105 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/150452 | - |
dc.description.abstract | Interference effects on a row of square-plan tall buildings arranged in close proximity are investigated with wind tunnel experiments. Wind forces and moments on each building in the row are measured with the base balance under different wind incidence angles and different separation distances between buildings. As a result of sheltering, inner buildings inside the row are found to experience much reduced wind load components acting along direction of the row (x) at most wind angles, as compared to the isolated building situation. However, these load components may exhibit phenomena of upwind-acting force and even negative drag force. Increase in x-direction wind loads is observed on the upwind edge building when wind blows at an oblique angle to the row. Other interference effects on y-direction wind loads and torsion are described. Pressure measurements on building walls and numerical computation of wind flow are carried out at some flow cases to explore the interference mechanisms. At wind angle around 30° to the row, wind is visualized to flow through the narrow building gaps at high speeds, resulting in highly negative pressure on associated building walls. This negative pressure and the single-wake behavior of flow over the row of buildings provide explanations for the observed interference effects. Interference on fluctuating wind loads is also investigated. Across-wind load fluctuations are much smaller than the isolated building case with the disappearance of vortex shedding peak in the load spectra. Buildings in a row thus do not exhibit resonant across-wind response at reduced velocities around 10 as an isolated square-plan tall building. © 2008 Elsevier Ltd. All rights reserved. | en_US |
dc.language | eng | en_US |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/jweia | en_US |
dc.relation.ispartof | Journal of Wind Engineering and Industrial Aerodynamics | en_US |
dc.subject | Channeling | en_US |
dc.subject | Interference Effect | en_US |
dc.subject | Sheltering | en_US |
dc.subject | Wind Loads | en_US |
dc.subject | Wind Pressure | en_US |
dc.subject | Wind Tunnel Testing | en_US |
dc.title | Interference effects on wind loading of a row of closely spaced tall buildings | en_US |
dc.type | Article | en_US |
dc.identifier.email | Lam, KM:kmlam@hku.hk | en_US |
dc.identifier.authority | Lam, KM=rp00134 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/j.jweia.2008.01.010 | en_US |
dc.identifier.scopus | eid_2-s2.0-43749104093 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-43749104093&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 96 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.spage | 562 | en_US |
dc.identifier.epage | 583 | en_US |
dc.identifier.eissn | 1872-8197 | - |
dc.identifier.isi | WOS:000257043300006 | - |
dc.publisher.place | Netherlands | en_US |
dc.relation.erratum | doi:10.1016/j.jweia.2009.04.001 | - |
dc.identifier.scopusauthorid | Lam, KM=7403656958 | en_US |
dc.identifier.scopusauthorid | H Leung, MY=24280223500 | en_US |
dc.identifier.scopusauthorid | Zhao, JG=15746105900 | en_US |
dc.identifier.issnl | 0167-6105 | - |