A novel RF coil: tunable loop microstrip (TLM) coil

B. Wu1, P. Qu1, J. Yuan1, G. X. Shen1

1MRI Lab. Dept. of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China, People's Republic of

Introduction:

Microstrip coils terminated with open or short circuit have been presented to achieve better SNR than conventional surface coil in ultra-high field [1,2]. However, the coil dimension is critically limited by strip length and substrate permittivity. In addition, frequency tuning by changing strip length [1] is not convenient.

Ring resonator has been widely used in microwave measurement and filter design [3-5]. Ring resonator can achieve higher Q and less frequency shift with loading than microstrip coils terminated with open or short circuit [6]. Taking advantage of the ring structure, we design a novel tunable loop microstrip (TLM) coil for MRI.

Theory:

The basic structure of TLM coil and its equivalent circuit based on odd mode analysis [6] are shown in Fig 1. \(\theta \) and \(C_T \) are electric length and tuning capacitance respectively. The resonant frequency and Q of TLM coil were analyzed from this equivalent circuit.

Resonant frequency:

The ABCD parameter of TLM coil can be expressed as the follows:

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
-j2\alpha C_T & 1
\end{bmatrix}
\begin{bmatrix}
\cos(\theta/2) & jZ_0\sin(\theta/2) \\
j\sin(\theta/2)/Z_0 & \cos(\theta/2)
\end{bmatrix}
\]

(1)

\(Y_n \) of TLM is:

\[
Y_n = \frac{C_L + D}{AZ_L + B} Z_{\theta=0} = \frac{D}{B} = j \frac{2\alpha C_T Z_0 \sin(\theta/2) - \cos(\theta/2)}{Z_0 \sin(\theta/2)}.
\]

(2)

Set \(Y_n \) to zero and substitute \(\alpha = \theta \sqrt{\varepsilon_r} / l \), where \(c, \varepsilon_r, l \) are velocity of light in free space, effective permittivity, mean perimeter of coil respectively. The resonant frequency can be found

\[
\omega^2 = Y_\theta C_l (\sqrt{\varepsilon_r} / l C_T).
\]

Quality factor:

From TLM equivalent circuit, unload quality factor of TLM coil can be expressed as

\[
Q = \frac{\tan^{-1}(\theta/2)}{20(1+\tan^2(\theta/2))} \left(c \tan(\theta/2) + \cos \theta \cdot \theta / (2 \theta) \right) \frac{\omega_0}{\alpha},
\]

where \(\alpha \) is known as attenuation constant. From Eq. (4), Q is almost unchanged with coil length increment. Thus, coil dimension can be selected mainly based on sample size without loss of coil efficiency.

Experiments and results:

We built a TLM RF coil with resonant frequency at 63.88MHz for 1.5T Signa (GE Medical System) system. Fig 2 is the schematic diagram of the receive-only TLM RF coil. The dimension of the copper tape is 7.6 x 7.6 cm with the copper width of 1.25cm. Teflon with thickness of 6mm is used for substrate. The TLM coil was detuned from the whole body coil during transmitting by PIN diodes. A conventional surface coil and a multi-turn receive-only TLM RF coil. The dimension of the copper tape is 7.6 x 7.6 cm with the copper width of 1.25cm. Teflon with thickness of 6mm is used for substrate permittivity. Experiments show that it has higher Q than the conventional surface coil and microstrip coil respectively. The resonant frequency and Q of TLM coil were analyzed from this equivalent circuit.

\[\text{References:}\]

Fig 1. (a) The structure of TLM coil for analysis and (b) its equivalent circuit.

Fig 2. Schematic diagram of TLM coil. \(C_T \) and \(C_M \) are tuning and matching capacitor.

Fig 3. GRE 1.5T image of sodium chloride phantom using TLM coil. TR=120ms, TE=3.2ms, NEX=1, flip angle=60°, FOV=15cm x 15cm.