<table>
<thead>
<tr>
<th>Title</th>
<th>Au/n-ZnO rectifying contact fabricated with hydrogen peroxide pretreatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Gu, QL; Cheung, CK; Ling, CC; Ng, AMC; Djuriši, AB; Lu, LW; Chen, XD; Fung, S; Beling, CD; Ong, HC</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal Of Applied Physics, 2008, v. 103 n. 9, article no. 093706</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2008</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/80793</td>
</tr>
<tr>
<td>Rights</td>
<td>Journal of Applied Physics. Copyright © American Institute of Physics.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Au/\(n\)-ZnO rectifying contact fabricated with hydrogen peroxide pretreatment

Q. L. Gu, a, b) C. K. Cheung, a C. C. Ling, a,b) A. M. C. Ng, a A. B. Djurišić, a L. W. Lu, a
X. D. Chen, a S. Fung, a C. D. Beling, a and H. C. Ong a

aDepartment of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
bDepartment of Physics, Chinese University of Hong Kong, Shatin, Hong Kong, People’s Republic of China

(Received 21 December 2007; accepted 27 February 2008; published online 5 May 2008)

Au contacts were deposited on \(n\)-type ZnO single crystals with and without hydrogen peroxide pretreatment for the ZnO substrate. The Au/ZnO contacts fabricated on substrates without \(H_2O_2\) pretreatment were Ohmic and those with \(H_2O_2\) pretreatment were rectifying. With an aim of fabricating a good quality Schottky contact, the rectifying property of the Au/ZnO contact was systematically investigated by varying the treatment temperature and duration. The best performing Schottky contact was found to have an ideality factor of 1.15 and a leakage current of \(\sim 10^{-7} \text{ A cm}^{-2}\). A multispectroscopic study, including scanning electron microscopy, positron annihilation spectroscopy, deep level transient spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence, showed that the \(H_2O_2\) treatment removed the OH impurity and created Zn-vacancy related defects hence decreasing the conductivity of the ZnO surface layer, a condition favorable for forming good Schottky contact. However, the \(H_2O_2\) treatment also resulted in a deterioration of the surface morphology, leading to an increase in the Schottky contact ideality factor and leakage current in the case of nonoptimal treatment time and temperature. © 2008 American Institute of Physics. [DOI: 10.1063/1.2912827]

I. INTRODUCTION

ZnO is a wide band gap semiconductor material that has attracted widespread attention because of its potential device applications such as optoelectronic and spintronic.1-13 Although fabricating Schottky contacts is essential for developing ZnO-based devices, making a good quality rectifying contact to ZnO is not trivial. According to the Schottky--Mott model, the barrier height of an ideal Schottky contact, \(\phi_b\), is given by the difference between the metal work function \(\phi_m\) and the semiconductor electron affinity \(\chi\), i.e., \(\phi_b = \phi_m - \chi\). Thus, metals that have a work function larger than the electron affinity of ZnO [4.35 eV (Ref. 4)] would be possible candidates for forming Schottky contacts and the Schottky barrier height increases with the metal work function. Metals such as Pt (\(\phi = 5.65\) eV), Pd (\(\phi = 5.12\) eV), and Au (\(\phi = 5.10\) eV) (Ref. 5) would be able to form Schottky contacts and these would have calculated Schottky barrier heights of 1.30, 0.77, and 0.75 eV, respectively.

Although there were some successes in fabricating rectifying contacts on \(n\)-type ZnO by using these metals,6-20 most of these contacts had relatively high values of leakage current and ideality factor. Moreover, the measured Schottky barrier heights were smaller than that predicted by the Schottky--Mott model. In other cases, the metal/ZnO contacts fabricated were found to be Ohmic rather than rectifying. Surface pretreatments such as wet chemical etching (HCl, \(H_2O_2\), etc.), ozone cleaning, and oxygen plasma cleaning were reported to convert the metal/\(n\)-ZnO from Ohmic to rectifying or to have the effect of improving the rectifying contact property. With a pretreatment in phosphoric acid and hydrochloric acid, rectifying contacts of Au and Pd were made to a \(n\)-type ZnO crystal by Mead6 and Neville and Mead.7 Oh et al.8 studied the Au contact made to a plasma-assisted molecular beam epitaxy grown N-doped ZnO film and their results suggest that a good Schottky characteristic is associated with an increase in the ZnO:N layer resistivity. Nemanich and co-workers9,10 observed that oxygen plasma pretreatment removes carbon and OH impurities on the ZnO surface, having the effect of improving the quality of the Au/ZnO Schottky contact. Furthermore, it was also concluded that the difference between the experimental and the Schottky--Mott model values of the Schottky barrier height is due to the existence of interface states. The improvement of the Schottky contact quality induced by UV-ozone cleaning was observed by Ip et al.11 and was related to the removal of C contamination. Mosbacher et al.12 observed an Ohmic to rectifying conversion on a Au/ZnO contact after the ZnO substrate was pretreated with remote room temperature oxygen plasma treatment. This was accompanied by the removal of C and OH contamination, a reduction of the green deep level cathodoluminescence signal and an increase in the band bending. Kim et al.13 also observed an Ohmic to rectifying conversion on a Pt/ZnO contact with pretreatment of \((NH_4)S_x\) solution. This was attributed to the formation of a layer with a reduced net carrier concentration, which is possibly related to the formation of a Zn vacancy acceptor or a ZnS interface, hence, resulting in the low conductivity. In a later study, Kim et al.14 studied the Pt/ZnO contacts fabricated with pretreatment of boiling \(H_2O_2\). The \(H_2O_2\) treatment significantly reduced the leakage current of the diode and, at
the same time, the deep level emission photoluminescence (PL) signal was also found to be reduced. This was explained in terms of the removal of a donorlike Zn interstitial and oxygen vacancy, hence, the reduction of the free carrier concentration.

The electrical performance of a metal/ZnO contact depends on a number of factors, for example, OH and C contaminations, interface layer, deep level defects, and surface morphology. A multispectroscopic approach has to be adopted so as to obtain a comprehensive picture of the way these mechanisms influence the contact performance. In a recently published short letter, we observed an Ohmic to rectifying conversion on a Au/n-ZnO contact pretreated with H2O2 and showed that the conversion is associated with the elimination of the OH contamination and the formation of Zn vacancy or the related vacancy cluster. In the present study, the influence of H2O2 pretreatment on the Au/n-ZnO samples as well as the condition of pretreatment were systematically investigated with a multispectroscopic approach using I-V measurement, x-ray photoelectron spectroscopy (XPS), positron annihilation spectroscopy (PAS), scanning electron microscopy (SEM), deep level transient spectroscopy (DLTS), and PL.

II. EXPERIMENTAL

The as-received n-type ZnO (0001) single crystal substrate (Cermet, Inc.) had a carrier concentration of 5 \times 10^{16} \text{ cm}^{-2} and one side polished. The substrates were first cleaned by acetone and ethanol and then rinsed in de-ionized water each for 5 min at room temperature. Ohmic contacts were fabricated by evaporating a large area Al metal disk onto the rough side of the sample. Circular Au contacts with a diameter of 0.5 mm and a thickness of 50 nm were fabricated by thermal evaporation at a background pressure of 10^{-6} \text{Torr} with or without H2O2 pretreatment. The temperature and duration of the H2O2 treatment varied from room temperature to the boiling point of H2O2 and from 1 to 30 min, respectively. I-V measurements were conducted with a HP 4155A semiconductor parameter analyzer. To investigate the effect of the H2O2 treatment on the vacancy type defect in the ZnO substrate, PAS study was carried out by a variable positron beam and an HPGe gamma ray detector system. The HPGe detector had a resolution of full width at half maximum equal to 1.3 keV at the gamma peak of 514 keV. Surface contamination of the ZnO substrate was studied by XPS with a PHI Quantum 2000 XPS/ESCA system, and for deep level information, DLTS measurements were carried out with a Sula DLTS system. For PL measurements, the samples were excited by a 60 mW HeCd (Kimmon) laser and the signal was dispersed by a 0.25 m spectrometer and then captured by an Andor charge-coupled device detector. An Oxford closed cycle He cryostat was used to vary the sample temperature from 10 to 290 K.

III. RESULTS

I-V measurements were performed on the Au/ZnO samples fabricated with different conditions of H2O2 pretreatment. For the same condition of treatment, I-V measurements were conducted on at least five Au/ZnO contacts fabricated to ensure the results were reproducible and reliable. The I-V data of the Au/ZnO contacts fabricated with such pretreatments became rectifying and the rectifying properties of the 3 and 30 min boiling H2O2 pretreated samples are shown in Fig. 1, from which a clear Ohmic behavior can be observed. We have also fabricated the Au contact on the ZnO substrate pretreated with boiling acetone, boiling trichloroethylene, and boiling methanol, and the resulting Au/ZnO was also found to be of Ohmic nature.

ZnO substrates were also pretreated with boiling H2O2 for different durations (from 1 to 30 min) before the Au contact was deposited. All of the Au/ZnO contacts fabricated with such pretreatments became rectifying and the rectifying properties of the 3 and 30 min boiling H2O2 pretreated samples are shown in Fig. 1. The barrier height \(\phi_b \) and the ideality factor \(n \) were calculated according to the thermionic emission model, which predicts an I-V relation of

\[
I = A A' T^2 \exp(-q \phi_b / kT) \exp[q(V − IR_S)/nkT],
\]

where \(A \) is the area of the metal contact, \(A' \) is the effective Richardson constant, and \(R_S \) is the serial resistance linked to the diode sample. The leakage current observed at \(V_R = −1 \text{ V} \), the calculated \(\phi_b \), and the ideality factor \(n \) of the samples pretreated with boiling H2O2 are shown in Table I. The sample pretreated with boiling H2O2 for a period of 1–3 min had \(n \)

\[
\begin{array}{ccc}
\text{Ideality factor} & \text{Barrier height} & \text{Leakage current} \\
\text{n} & \phi_b (\text{eV}) & \text{at } V_R = -1 \text{ V} \\
\hline
\text{Room temperature} & & \\
3 \text{ min} & 2.74 & 0.35 & \sim 10^{-3} \\
100 ^\circ \text{C} & & & \\
1 \text{ min} & 1.36 & 0.63 & \sim 10^{-7} \\
3 \text{ min} & 1.15 & 0.63 & \sim 10^{-9} \\
30 \text{ min} & 2.25 & 0.51 & \sim 10^{-8} \\
\text{Boiling} & & & \\
1 \text{ min} & 1.64 & 0.60 & \sim 10^{-8} \\
3 \text{ min} & 1.67 & 0.60 & \sim 10^{-8} \\
30 \text{ min} & 2.89 & 0.53 & \sim 10^{-7} \\
\end{array}
\]

FIG. 1. (Color online) I-V data of the Au/ZnO contacts with the ZnO substrates under different H2O2 pretreatment conditions.

TABLE I. Ideality factors \(n \), barrier height \(\phi_b \), and leakage current (measured at −1 V reverse bias) of the Au/ZnO contacts fabricated with H2O2 pretreatments at different temperatures and with different durations.

With a prolonged pretreatment of 30 min, the parameters deteriorated to $n=2.9$, $\phi_b=0.53$ eV, and $I_{\text{leak}}=4\times10^{-7}$ A at $V_R=-1$ V.

PAS was also used to investigate the effect of the H$_2$O$_2$ treatment on the ZnO surface. PAS has been proved to be a useful probe for investigating vacancy type defects in semiconductors.22,23 Positrons implanted into the solid are thermalized and then undergo diffusion. If neutral or negatively charged vacancy type defects exist, the diffusing positrons, being positive, will be trapped by these defects. The positron in the delocalized bulk state or in the localized defect state will finally annihilate with its surrounding electron and emit a pair of gamma photons. The principle of PAS is that the outgoing annihilation gamma photons carry the information of the electronic environment at which the positron annihilates. In the present study, monoenergetic positrons were implanted into the sample to the desired depth by varying the positron implanting energy up to a value of 30 keV. The electronic environment at different depths was revealed by the Doppler broadening of the annihilation gamma photons, which was parameterized by the S-parameter and the W-parameter. The S-parameter and W-parameter are defined as the ratios of the count of a fixed central window [C, as shown in Fig. 3(a)] and the count of the pair of fixed windows [$W_1 + W_2$, as shown in Fig. 3(a)] to the total count of the annihilation peak, respectively. The central region and the side windows of the annihilation peak were associated with the events of the positron annihilating with the low momentum valence electron and the high momentum core electron, respectively. As the wave function of a positron in the localized vacancy state has a greater overlap with that of a valence electron as compared to a core electron, a larger measured S-parameter indicates that more positrons annihilate in the vacancy state and/or in a larger open volume vacancy type defect.

\begin{equation}
\frac{\partial n(x,t)}{\partial t} = D_x \frac{\partial^2 n(x,t)}{\partial x^2} - \nu_n \frac{\partial n(x,t)}{\partial x} - \lambda_{\text{eff}} n(x,t),
\end{equation}

where $n(x,t)$ is the positron density at a position x and a time t after the implantation, D_x is the positron diffusion constant,
$l_{\text{eff}} = (D/\lambda_{\text{eff}})^{1/2}$}

is used to calculate the positron drift velocity. $\lambda_{\text{eff}} = 1/\tau_\text{p} + \kappa(x)$ is the effective positron annihilation rate, τ_p is the positron bulk lifetime, and κ is the positron trapping rate into the vacancy. The effective positron diffusion length is given by

$$L_{\text{eff}} = (D/\lambda_{\text{eff}})^{1/2}$$

for zero electric field. The positron implantation depth profile is given by the Makhov equation originally used for electron implantation, i.e., $P(x,E) = (m^{m-1}/x_0\alpha) \exp[-(x/x_0)^m]$, where $x_0 = \Gamma(1+1/m)$, where Γ is the gamma function and \bar{x} is the mean implantation depth given by $\bar{x} = AE^m$. The empirical values of the parameters are generally accepted as $m=2$, $n=1.6$, and $A=400/\rho \bar{A} \text{ keV}^{-m}$, where ρ is the sample mass density in the unit of g cm$^{-3}$. The sample was considered to be in a layered structure as shown in Fig. 3(b) and each of the layers has its own effective positron diffusion length L_{i} and characteristic S-parameter. The fraction of positron annihilating at the different layers can thus be found by solving Eq. (1).

Referring to the $S(E)$ of different samples, as shown in Fig. 4, a one layer model [as shown in Fig. 3(b)] resulted in a good fit to the untreated sample, but a three layer model [as shown in Fig. 3(b)] was needed for the H_2O_2 treated samples. The fitted curves are denoted by the solid lines in Fig. 4. The fitted S-parameters and the effective positron diffusion lengths for each of the layers of the samples are shown in Table II. The applicability of the one layer model to the untreated sample $S(E)$ data implied that the untreated sample was of a homogeneous bulk structure having an effective positron diffusion of 72 nm and an S-parameter of 0.5109 (fitted results as shown in Table II). For the H_2O_2 treated samples, the existence of the two extra layers having a relatively high S-parameter and a low effective diffusion length on top of the bulk revealed that the H_2O_2 treatment induced the formation of vacancy type defects in the regions.

In order to investigate the nature of the vacancy type defects induced during the H_2O_2 treatment, the S-parameter of each of the annihilation events for the H_2O_2 treated samples was plotted against its own W-parameter, as shown in the inset of Fig. 4. In general, the measured S and W parameters are given by

$$S = \left(1 - \sum_{i=1}^{N} f_{di} \right) S_b + \sum_{i=1}^{N} f_{di} S_{di}$$

(3)

and

$$W = \left(1 - \sum_{i=1}^{N} f_{di} \right) W_b + \sum_{i=1}^{N} f_{di} W_{di},$$

(4)

where S_b and W_b are the S and W parameters of the bulk, respectively, and f_{di} is the fraction of positron annihilating in the defect state i ($i=1$ to N), with the corresponding characteristic S and W parameters S_{di} and W_{di}. It can easily be derived from Eqs. (3) that

<table>
<thead>
<tr>
<th>Layer</th>
<th>Surface</th>
<th>First layer</th>
<th>Second layer</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>$S_0=0.5373$</td>
<td>NA</td>
<td>NA</td>
<td>$S_b=0.5109$</td>
</tr>
<tr>
<td>3 min at 100 °C</td>
<td>$S_1=0.5453$</td>
<td>$L_1=30 \text{ nm}$</td>
<td>$X_1=56 \text{ nm}$</td>
<td>$L_b=72 \text{ nm}$</td>
</tr>
<tr>
<td>30 min at 100 °C</td>
<td>$S_2=0.5389$</td>
<td>$L_2=30 \text{ nm}$</td>
<td>$X_2=56 \text{ nm}$</td>
<td>$L_b=72 \text{ nm}$</td>
</tr>
<tr>
<td>Boiling</td>
<td>$S_3=0.5465$</td>
<td>$L_3=29 \text{ nm}$</td>
<td>$X_3=223 \text{ nm}$</td>
<td>$L_b=72 \text{ nm}$</td>
</tr>
</tbody>
</table>
\[S - S_b = \left(\sum_{i=1}^{N} f_{di}S_{di} \right) - \left(\sum_{i=1}^{N} f_{di}S_{b} \right) / \left(W - W_b \right) \left(\sum_{i=1}^{N} f_{di}W_{di} \right) - \left(\sum_{i=1}^{N} f_{di}W_{b} \right) \]

Equation (5) shows that, in general, if \(N > 1 \), \((S - S_b)/(W - W_b) \) is not a constant. However, if there is only a single type of defect, Eq. (5) would be reduced to

\[S - S_b = S_d - S_b / W - W_b \]

which is a constant and, thus, the SW plot would be of a straight line. The straight line observed in the inset of Fig. 4 shows that the vacancy type defects induced by the \(\text{H}_2\text{O}_2 \) treatment were the same type irrespective of the treatment temperature and duration. Positron trapping into \(\text{Zn} \) vacancy related defects and vacancy cluster was observed in \(n \)-type \(\text{ZnO} \). Positron annihilation does not occur in the \(\text{O} \) vacancy at room temperature because of its low binding energy. This implies that the vacancy type defect induced by the \(\text{H}_2\text{O}_2 \) treatment observed in the present study should be \(\text{Zn} \) vacancy or vacancy cluster.

As the measured effective positron diffusion length is limited by positron trapping into vacancy, as shown in Eq. (2), \([i.e., L_{\text{d}}^2 = D_{\text{eff}}/(\tau \times \kappa)] \), the drop in the measured \(L_{\text{a}} \) after the \(\text{H}_2\text{O}_2 \) treatment is related to the concentration of the induced vacancy type defect by

\[\frac{2dL_{\text{a}}}{L_{\text{a}}} = - \frac{d\kappa \mu C}{\lambda_{\text{eff}}} = \frac{\mu C}{\lambda_{\text{eff}}} \]

where \(\mu \) and \(C \) are the specific coefficients of positron trapping into the vacancy and the vacancy concentration. The value of \(\mu \) was \(10^{15} - 10^{16} \text{ s}^{-1} \) and \(\lambda_{\text{eff}} \) of the untreated sample was found to be \(166 \text{ ps}^{-1} \) by the positron lifetime measurement. The concentration of the induced vacancy type defects was thus in the range of \(10^{17} - 10^{18} \text{ cm}^{-3} \) as calculated from the fitted \(L_{\text{a}} \) values, as shown in Table II.

We have also carried out DLTS study for the rectifying diode fabricated with \(\text{H}_2\text{O}_2 \) pretreatment under different conditions (i.e., 3 min at \(100 \text{ °C} \), 30 min at \(100 \text{ °C} \), 3 min at boiling, and 30 min at boiling) and the DLTS spectra are shown in Fig. 5. A single peak at about 180 K was observed in the spectra of all of the samples irrespective of the treatment condition. The corresponding Arrhenius plots of these samples, which are shown in Fig. 6, indicate that they were associated with the same defect. The values of the activation energy and the capture cross section were obtained by the relation \(\exp[\gamma_n(\varepsilon_n + kT)] \) where \(\varepsilon_n \) is the rate of emission from the deep level to the conduction band, \(\gamma_n \) is a constant, \(\sigma_n \) is the capture cross section, and \(E_n \) is the defect activation energy. The activation energy, the concentration, and the capture cross section of the deep level defects found in the samples with different \(\text{H}_2\text{O}_2 \) treatments are shown in Table III. The deep level found in all of these samples should be identical as they have the same activation energy (0.31 eV) and capture cross section \((\sim 10^{16} \text{ cm}^2) \). Moreover, it was observed that the concentration of this deep level found in all of the samples was independent of the \(\text{H}_2\text{O}_2 \) treatment condition \((\sim 10^{15} \text{ cm}^{-3}) \). Deep level defects with similar activation energies (i.e., 0.29 and 0.31 eV) were reported in as-grown \(n \)-type \(\text{ZnO} \) single crystals. In particular, in an earlier study, nitrogen was implanted into the \(n \)-\(\text{ZnO} \) single crystal, whereas the \(\text{ZnO} \) substrates were grown by an identical method and obtained from the same company and had the similar free carrier concentration as the ones of the present study. DLTS study on the resulting \(p-n \) junction re-

![FIG. 5. (Color online) DLTS spectra obtained from the Au/ZnO Schottky contacts with the substrates pretreated with \(\text{H}_2\text{O}_2 \) for 3 min at \(100 \text{ °C} \), for 30 min at \(100 \text{ °C} \), for 3 min at the boiling point of \(\text{H}_2\text{O}_2 \), and for 30 min at the boiling point of \(\text{H}_2\text{O}_2 \).](image)

![FIG. 6. (Color online) Arrhenius plots of deep levels as found in the Au/ ZnO samples with the substrates pretreated with \(\text{H}_2\text{O}_2 \) for 3 min at \(100 \text{ °C} \), for 30 min at \(100 \text{ °C} \), for 3 min at the boiling point of \(\text{H}_2\text{O}_2 \), and for 30 min at the boiling point of \(\text{H}_2\text{O}_2 \).](image)

<table>
<thead>
<tr>
<th>Defect</th>
<th>Concentration</th>
<th>Capture Cross Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 min at (100 \text{ °C})</td>
<td>0.309</td>
<td>0.9 (\times 10^{15})</td>
</tr>
<tr>
<td>30 min at (100 \text{ °C})</td>
<td>0.306</td>
<td>1.0 (\times 10^{15})</td>
</tr>
<tr>
<td>3 min at boiling</td>
<td>0.317</td>
<td>1.2 (\times 10^{15})</td>
</tr>
<tr>
<td>30 min at boiling</td>
<td>0.307</td>
<td>0.9 (\times 10^{15})</td>
</tr>
</tbody>
</table>

TABLE III. Activation energies, concentrations, and capture cross sections of the deep level defect found in the samples with treatments of 3 min at \(100 \text{ °C} \), 30 min at \(100 \text{ °C} \), 3 min at the boiling point of \(\text{H}_2\text{O}_2 \), and 30 min at the boiling point of \(\text{H}_2\text{O}_2 \).
revealed the deep level E3 having an exact activation energy (i.e., 0.31 eV) as found here. Moreover, the reported concentration and the capture cross section of the E3 were within the range of 10^{15} cm$^{-3}$ and 10^{-16} cm2, which are also similar to the present results. As the same deep level with the same concentration was found in all of the present Schottky contacts irrespective of the H$_2$O$_2$ treatment condition and also in the p-n junction fabricated by N implantation, this deep level defect should not be a product induced by the fabrication process, such as H$_2$O$_2$ treatment or nitrogen implantation, but should be present in the as-grown pressurized melt grown ZnO single crystal obtained from Cermet, Inc. This implies that this deep level defect did not play an important role in determining the Au/ZnO contact electrical property. Identical observations were also made in the Auger electron spectroscopic measurements on similar samples.33

For the O signal, two peaks were required to obtain a good fit to the spectra, with the fitted results and the curves shown in Table IV and Fig. 8. The average binding energies of the two O-related peaks were 531.3 and 532.8 keV. A similar behavior was observed for different types of ZnO surfaces and the two peaks were associated with O and OH.9,10,12 It was obvious from Fig. 8 and Table IV that the H$_2$O$_2$ treatment would have the effect of reducing the OH signal intensity. The atomic Zn:O ratio was calculated and tabulated in Table IV. It was observed that with the H$_2$O$_2$ treatment, the sample surface changed from being Zn rich (Zn:O=1.86 for the untreated sample) to being O rich (Zn:O=0.27–0.40, depending on the treatment condition).

The optical properties of the untreated and H$_2$O$_2$ pre-treated ZnO substrates were investigated by low-temperature PL carried out at 10 K. As shown in Fig. 9, the spectra are

<table>
<thead>
<tr>
<th>O</th>
<th>OH</th>
<th>Zn:O ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nontreated</td>
<td>20.9%</td>
<td>26.1%</td>
</tr>
<tr>
<td>3 min at 100 °C</td>
<td>55.2%</td>
<td>1.3%</td>
</tr>
<tr>
<td>30 min at 100 °C</td>
<td>49.4%</td>
<td>6.2%</td>
</tr>
<tr>
<td>3 min at boiling</td>
<td>40.4%</td>
<td>14.6%</td>
</tr>
<tr>
<td>30 min at boiling</td>
<td>36.5%</td>
<td>20.9%</td>
</tr>
</tbody>
</table>

![FIG. 7. C 1s signal as found in XPS spectra obtained from the untreated ZnO sample and from the samples treated with H$_2$O$_2$ for 3 min at 100 °C, for 30 min at 100 °C, for 3 min at the boiling point of H$_2$O$_2$, and for 30 min at the boiling point of H$_2$O$_2$.](image)

![FIG. 8. O 1s signal as found in the XPS spectra obtained from the untreated ZnO sample and from the samples treated with H$_2$O$_2$ for 3 min at 100 °C, for 30 min at 100 °C, for 3 min at the boiling point of H$_2$O$_2$, and for 30 min at the boiling point of H$_2$O$_2$.](image)
dominated by strong near band-edge emissions that originated from neutral-donor bound exciton \((D^0X)\) and weaker deep level defect emission. It is evident that the untreated sample has the strongest band-edge emission and the weakest deep level emission. After the 3 min at 100 °C \(\text{H}_2\text{O}_2\) treatment, the intensity of the deep level emission remains almost unchanged, but the band-edge emission is significantly weakened. The intensity of the deep level defect emission significantly increases in the sample pretreated with \(\text{H}_2\text{O}_2\) for 30 min at the boiling point and that of the band-edge emission further decreases. All of the above results suggest that the surface \(\text{H}_2\text{O}_2\) treatment on the \(\text{ZnO}\) substrates decreased the intensity of the band-edge emission and increased that of the defect emission. The spectra obtained in the range of deep level emission are presented in the inset of Fig. 9. It should be noted that interference patterns can be observed in the spectrum of 30 min boiling-\(\text{H}_2\text{O}_2\) treated \(\text{ZnO}\) sample. This indicates that the top surface layer of the sample probably has different reflection coefficients from the lower layer. The present result suggests that the deep level defect related to the observed defect emission is not the origin of the Ohmic behavior of the untreated \(\text{Au/ZnO}\) contact.

IV. DISCUSSION AND CONCLUSION

From Fig. 1, it can be seen that the 3 min room temperature treatment converts the \(IV\) behavior from a symmetric Ohmic behavior to an asymmetric rectifying one \((I_{\text{leak}} \sim 10^{-3} \text{ A})\). Increasing the treatment temperature to 100 °C but fixing the treatment duration as 3 min would yield the best performing diode, which had \(I_{\text{leak}} \sim 10^{-9} \text{ A}\), and further increasing the temperature to that of boiling \(\text{H}_2\text{O}_2\) would worsen the \(I_{\text{leak}} \sim 10^{-8} \text{ A}\). Increasing the treatment duration to 30 min in boiling \(\text{H}_2\text{O}_2\) would further increase the \(I_{\text{leak}}\) to \(10^{-7} \text{ A}\). The SEM images (Fig. 2) showed that the untreated sample surface had the best morphology among the others. \(\text{H}_2\text{O}_2\) treatment at 100 °C would induce submicron grain structure. In previous studies of metal/\(\text{ZnO}\) contact, it was reported that a good Schottky contact was associated with a good sample surface morphology. The observation in the present study revealed that the \(\text{ZnO}\) substrate morphology was not the only factor determining the fabricated \(\text{Au/ZnO}\) diode as the sample fabricated with the untreated \(\text{ZnO}\) surface was found to be Ohmic. On the other hand, although the 3 min at 100 °C \(\text{H}_2\text{O}_2\) treatment increased the surface roughness and induced submicron grain structure, the resulting \(\text{Au/ZnO}\) sample was the best performing Schottky contact. The 3 and the 30 min boiling \(\text{H}_2\text{O}_2\) treatments on the \(\text{ZnO}\) substrate resulted in very poor morphology. Despite this, the \(\text{Au/ZnO}\) contact fabricated from this substrate was still rectifying though the leakage current and the ideality factor were large. The high values of the ideality factor and the leakage current could be understood from the deterioration of the morphology. Moreover, the low-temperature PL also indicated the increase of deep level defect emission after the \(\text{H}_2\text{O}_2\) treatment. As the bad morphology and the deep level defects have been associated with poor rectifying property of Schottky contact, there is another mechanism prohibiting the \(\text{Au/ZnO}\) sample fabricated from the untreated substrate from having good rectifying behavior. This mechanism can be removed by \(\text{H}_2\text{O}_2\) treatment.

The results of the XPS study, as shown in Fig. 8 and Table IV, indicate that the surface OH intensity dropped after the \(\text{H}_2\text{O}_2\) treatment. It was also found from the present data that the best performing \(\text{Au/ZnO}\) contact fabricated from the 3 min at 100 °C treated substrate was the one with the lowest OH intensity. However, it was also interesting to note that the OH intensity did not drop further but increased after treatment with more vigorous conditions (i.e., higher temperature or longer duration). The reason for this observation is not understood and requires further investigation. In previous studies conducted by Polyakov et al., Oh et al., Coppa et al., and Kim et al., C and OH impurities on \(\text{ZnO}\) surface were removed after surface treatments such as ozone and plasma cleaning. After these surface treatments, improvements on the metal/\(\text{ZnO}\) contact property or Ohmic to rectifying conversion were observed. It was further argued that the C and OH contaminations were possible causes for the difficulty in fabricating good performing metal/\(\text{ZnO}\) Schottky contacts. In the present study, it was observed that the C impurity on the \(\text{ZnO}\) surface could not be removed by the \(\text{H}_2\text{O}_2\) treatments. As the \(\text{Au/ZnO}\) contacts fabricated with the substrates having such C surface contamination still have a good rectifying property (such as the sample fabricated from the 3 min at 100 °C treated substrate), it is thus plausible to conclude that the improvement in the contact rectifying property is related to the removal of OH rather than the C impurity. As the presence of the OH is known to lead to the formation of an accumulation layer having a high conductivity on the \(\text{ZnO}\) surface, the presence of such an accumulation layer would undoubtedly prevent the fabrication of a good quality rectifying contact on the \(\text{ZnO}\) surface.

The results of the present PAS study reveal the creation of Zn-vacancy defects up to the concentration of \(10^{17} \text{ cm}^{-3}\) at the substrate surface upon the \(\text{H}_2\text{O}_2\) treatment. The Zn...
vacancy in ZnO is an acceptor and the formation of this defect would have a compensation effect, thus reducing the surface free carrier concentration.

In conclusion, we have successfully fabricated good performing rectifying Au/ZnO contacts by pretreating the ZnO substrate with H$_2$O$_2$. The H$_2$O$_2$ pre-treatment has the effects of reducing the OH impurity and inducing the formation of Zn vacancy acceptor on the substrate surface. This induced Ohmic to rectifying conversion behavior in the Au/ZnO contact can thus be understood in terms of the suppression of the free carrier concentration at the surface region of the ZnO substrate.

ACKNOWLEDGMENTS

We wish to acknowledge financial support from the CERG, RGC, HKSAR (Grant No. 7037/06) and the Seed Funding Program for Basic Research, HKU (Project Code 200611159143); the positron beam facility was financially sponsored by the University Development Fund, HKU.