
Nernst and Seebeck effects in a graphene nanoribbon

Yanxia Xing,1 Qing-feng Sun,2 and Jian Wang1

1Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road,
Hong Kong, China

2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
�Received 24 June 2009; revised manuscript received 9 September 2009; published 9 December 2009�

The thermoelectric power, including the Nernst and Seebeck effects, in graphene nanoribbon is studied. By
using the nonequilibrium Green’s function combining with the tight-binding Hamiltonian, the Nernst and
Seebeck coefficients are obtained. Due to the electron-hole symmetry, the Nernst coefficient is an even function
of the Fermi energy while the Seebeck coefficient is an odd function regardless of the magnetic field. In the
presence of a strong magnetic field, the Nernst and Seebeck coefficients are almost independent of the chirality
and width of the nanoribbon, and they show peaks when the Fermi energy crosses the Landau levels. The
height of nth �excluding n=0� peak is �ln 2 / �n�� for the Nernst effect and is �ln 2 /n� for the Seebeck effect. For
the zeroth peak, it is abnormal with height �2 ln 2� for the Nernst effect and the peak disappears for the
Seebeck effect. When the magnetic field is turned off, however, the Nernst effect is absent and only Seebeck
effect exists. In this case, the Seebeck coefficient strongly depends on the chirality of the nanoribbon. The
peaks are equidistant for the nanoribbons with zigzag edge but are irregularly distributed for the armchair edge.
In particular, for the insulating armchair ribbon, the Seebeck coefficient can be very large near the Dirac point.
When the magnetic field varies from zero to large values, the differences among the Seebeck coefficients for
different chiral ribbons gradually vanish and the nonzero value of Nernst coefficient appears first near the Dirac
point then gradually extends to the whole energy region.
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I. INTRODUCTION

As a single atomic layer extracted from graphite,
graphene has been successfully fabricated experimentally.1,2

Due to its peculiar topological structure, the graphene exhib-
its peculiar properties.3 For the graphene sheet, the conduc-
tion and valence band in graphene intersect at Dirac points,
the corners of the hexagonal first Brillouin zone. Around the
Dirac points graphene has a unique band structure and its
quasiparticles satisfy the massless Dirac equation where the
speed of light is replaced by the Fermi velocity of graphene
�vF�106 m /s�. Experimentally, by varying the gate voltage,
the charge carriers of graphene can be easily tuned, globally1

or locally.4 As a result the Fermi level can be above or below
the Dirac points, which is viewed as electronlike or holelike
system. Along the different crystal direction in honeycomb
lattice, the band structure5 and the transport properties are
different. For the graphene ribbon with the zigzag edge, a
special edge state exists.6 While for the graphene ribbon with
armchair edge, it is metallic when the transverse layer N
=3M −1 with integer M and insulator otherwise.6 When the
perpendicular magnetic field is strong enough to form Lan-
dau levels �LLs�, these differences due to different chirality
at the zero magnetic field disappear. In addition, both
theoretically7 and experimentally,3 the Hall conductance was
found to be the half integer in the values g�n+1 /2�e2 /h with
degeneracy g=4, indicating that the quantization condition is
shifted by a half integer compared with the usual integer
quantum-Hall effect. It is a direct manifestation of the unique
electronic structure of graphene.

The thermoelectric power �TEP�, or the thermal-gradient-
induced current �or bias with an open boundary�, results
from a balance of electric and thermal forces acting on the

charge carriers. In general, we consider two thermoelectric
powers, the Nernst effect which is the transverse TEP in-
duced by a longitudinal thermal gradient in a perpendicular
magnetic field and the Seebeck effect which is the thermal-
gradient-induced bias in a two-probe system. TEP is of great
importance in understanding electronic transport because it is
more sensitive to the details of the density of states8 and the
particle-hole asymmetry9 than the conductance. In the early
days, because of the experimental difficulty �particularly in
low-dimensional systems or nanodevices�, the Nernst effect
and Seebeck effect are often neglected. Instead, one usually
measures the Hall effect and the resistivity. Now, with the
development of the microfabrication technology and the low-
temperature measurement technology, the thermoelectric
measurement in low-dimensional samples has been
feasible.10 Recently, the Nernst effect and Seebeck effect
have been widely observed and experimentally investigated
in many systems, including the high-Tc superconductivity,11

ferromagnets,12 semimetallic,13 pyrochlore molybdates,14

bismuth,15 single-walled carbon nanotube,16 etc. For the
graphene, the study of thermoelectric properties can eluci-
date details of the electronic structure of the ambipolar na-
ture that cannot be realized by probing conductance alone.
Very recently, using a microfabricated heater and thermom-
eter electrodes, the conductance and the diffusive TEP of
graphene are simultaneously measured by Zuev et al..17 and
Wei et al.18 Zuev et al. found electrons and holes contribute
to Seebeck effect in opposite ways. At high temperatures
direct measurement of Seebeck coefficient SC can be com-
pared with that calculated from the Mott relation.19 Further-
more, divergence of SC and the large Nernst signal were
found near the charge neutral point �i.e., the Dirac point�.18

Also, at low temperatures, depending on EF, TEP is oscillat-
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ing. The temperature suppresses the oscillation and enhances
the magnitude of TEP.

Up to now, some theoretical investigations have been car-
ried out on the thermal response in the graphene. The elec-
tronic transport coefficients including thermopower was
semiclassically treated and only classical Hall effect �low
field� in graphene was studied.20 In addition, the Nernst co-
efficient was studied only in weak magnetic field. It was
found to be strong and positive near Dirac point.7 For a
strong magnetic field in the quantum-Hall regime, the See-
beck coefficient was studied and was focused on its depen-
dence of the field orientation.21 In all these works, the quan-
tum Nernst effect is absent because of the calculational
subtleties in the presence of the strong magnetic field. For
the normal two-dimensional electron gas characterized by a
parabolic dispersion, the Nernst effect has been studied.22–24

Of these works, two alternative boundary conditions were
considered in calculating the thermal response functions.
One is the adiabatic boundary condition that the tempera-
tures in the upper and lower edge are fixed. In this case the
Nernst coefficient is similar to the Seebeck coefficient.22 The
other one is the nonadiabatic boundary condition on the up-
per and lower edges in which the edge currents are in contact
with two heat baths with different temperatures.24 The Nernst
coefficient is different from the Seebeck coefficient. It is the
purpose of our work to focus on the quantum Nernst effect in
the graphene nanoribbon with the adiabatic boundary condi-
tion.

In this paper, we carry out a theoretical study of the
Nernst effect in a crossed graphene nanoribbon and the See-
beck effect in a single graphene nanoribbon in the strong
perpendicular magnetic field, zero magnetic field, and weak
magnetic field. By using the tight-binding model and the
nonequilibrium Green’s-function method, the transmission
coefficient and consequently the Nernst and Seebeck coeffi-
cients are obtained. In a strong perpendicular magnetic field
B, high-degenerated LLs are formed, and the edge states
dominate the transport processes, so the Nernst �Seebeck�
coefficients are almost the same along the different chiral
directions. We find that the Nernst coefficient NC and the
Seebeck coefficient SC show peaks when the Fermi energy
EF passes the LLs. At EF=0, because the zeroth LL is shared
by electronlike and holelike Landau states, NC which is an
even function of EF has the highest peak while SC which is
an odd function of EF vanishes. On the other hand, at zero B,
there is no Lorentz force to bend the trajectories of the ther-
mally diffusing carriers, so Nernst effect is absent. In this
case, the Seebeck coefficient SC is strongly dependent on the
chirality of graphene ribbon. In particular, for the insulating
armchair ribbon, SC can be very large near the Dirac point.
At last, the crossover behavior of the thermoelectric power
from the zero magnetic field to the strong magnetic field is
also studied.

The rest of the paper is organized as follows. In Sec. II,
the models for crossed graphene ribbon or single graphene
ribbon are introduced. The formalisms for calculating the
Nernst and Seebeck coefficient are then derived. Section III
gives numerical results along with discussions. Finally, a
brief summary is presented in Sec. IV.

II. MODEL AND FORMALISM

We consider two graphene systems: a four-terminal
crossed graphene nanoribbon and a two-terminal graphene
nanoribbon as shown in the left and right insets of Fig. 1�b�.
Here we consider ballistic two-dimensional electron gas in
which the mean-free path and the phase coherent length are
greater than the device size. In the experiment, we can use
the smaller sample to reduce the device size, and use the
lower temperature or the higher magnetic field to enhance
the phase coherent length. In the tight-binding representa-
tion, the Hamiltonian operator can be written in the follow-
ing form3,25,26

HG = �
i

�iai
†ai − �

�ij	
tei�ijai

†aj, �1�

where i= �ix , iy� is the index of the discrete honeycomb lattice
site which is arranged as in inset of Fig. 1�b�, and ai and ai

†

are the annihilation and creation operators at the site i. �i is
the on-site energy �i.e., the energy of the Dirac point� which
can be controlled experimentally by the gate voltage, here
we set �i=0 as an energy zero point. The second term in Eq.
�2� is the hopping term with the hopping energy t. When the
graphene ribbon is under a uniform perpendicular magnetic
field Bz=B, a phase �ij is added in the hopping term, and
�ij =
i

jA� ·dl�/�0 with the vector potential A� = �−By ,0 ,0� and
the flux quanta �0=� /e.

With this ballistic system, the current flowing to the pth
graphene lead can be calculated from the Landauer-Büttiker
formula27

FIG. 1. �Color online� Nernst coefficient NC �a� in the four-
terminal system and Seebeck coefficient SC �b� in two-terminal sys-
tem vs Fermi energy EF with the strong magnetic field BS0

=0.008�0 /� and ribbon width N=80. Different curves are for dif-
ferent temperatures kBT. The four-terminal system and the two-
terminal system are shown in left and right inset in panel �b�,
respectively.
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Jp =
2e

�
�

q
� dE

2�
�Tpq�E��fp�E� − fq�E��
 , �2�

where p ,q=1,2 ,3 ,4 for the four-terminal system or p ,q
=1,2 for the two-terminal system, and Tpq is the transmis-
sion coefficient from terminal q to terminal p.

In Eq. �2�, the transmission coefficient Tpq can be calcu-
lated from Tpq�E�=Tr��pGr�qGa�, where the linewidth func-
tion �p�E�= i��p

r −�p
r†�. The Green’s function Gr�E�

= �Ga�E��†= �EI−H0−�p�p
r �E�
−1, where H0 is Hamiltonian

matrix of the central region and I is the unit matrix with the
same dimension as that of H0, and �p

r is the retarded self-
energy function from the lead p. The self-energy function
can be obtained from �p

r �E�=Hc,pgp
r �E�Hp,c, where Hc,p

�Hp,c� is the coupling from central region �lead p� to lead p
�central region� and gp

r �E� is the surface retarded Green’s
function of semi-infinite lead p which can be calculated us-
ing transfer-matrix method.28 fp�E� in Eq. �2� is the Fermi-
distribution function, it is also a function of the Fermi energy
EF and temperature T, and can be written as

fp�E,EF
p ,Tp� =

1

e�E−EF
p�/kBTp + 1

, �3�

where EF
p =EF+eVp with e the electron charge and Vp is the

external bias. In the four-terminal system, the thermal gradi-
ent �T is added between the longitudinal terminal 1 and
terminal 3, and T1=T+0.5�T, T3=T−0.5�T, V1=V3=0. Due
to the Lorentz force, the longitudinal thermal gradient in-
duces a transverse current J2,4 in the closed boundary condi-
tion or a transverse bias V2,4 in the open boundary condition
in the terminal 2 and terminal 4. Here we consider the open
boundary �J2=J4=0� and calculate the balanced bias V2,4.
While in the two-terminal system, both original thermal gra-
dient �T and induced balanced bias are considered in the
longitudinal terminal 1 and terminal 2, and we have T1=T
+0.5�T and T2=T−0.5�T. Assuming small thermal gradient
and consequently the small induced external bias, the Fermi-
distribution function in Eq. �3� can be expanded linearly
around the Fermi energy EF and the temperature T,

fp�E,EF
p ,Tp� = f0 + �eVp

� f

�EF
p �

Vp=0, Tp=T

+ ��Tp
� f

�Tp
�

Vp=0, Tp=T
= f0 + f0�f0 − 1�

	� eVp

kBT
+ �E − EF�

�Tp

kBT2� , �4�

where f0= �e�E−EF�/kBT+1�−1 is the Fermi distribution in the
zero bias and zero thermal gradient. Then for the four-
terminal system, the current J2 of the terminal 2 can be re-
written as

J2 =
2e

h
� dEf0�f0 − 1�T21�E���E − EF�

�T
2kBT2 +

qV2

kBT
�

+
2e

h
� dEf0�f0 − 1�T23�E���E − EF�

− �T
2kBT2 +

qV2

kBT
�

+
2e

h
� dEf0�f0 − 1�T24�E��e

V2 − V4

kBT
� . �5�

Similarly, the expression for the current J4 of the terminal 4
can also be obtained. Using the open boundary condition
with J2=J4=0 and considering the system symmetry �T21
=T43, T23=T41, and T24=T42�, the Nernst coefficient NC in
the four-terminal system is

NC = −
V2 − V4

�T
=

1

eT

dE�E − EF��T21 − T23�f0�f0 − 1�

dE�T21 + T23 + 2T24�f0�f0 − 1�

.

�6�

In the two-terminal system, the current J1=−J2 is

J1 =� dEf0�f0 − 1�T21�E���E − EF�
�T

2kBT2 + e
�V1 − V2�

kBT
� .

Let J1=0, we have Seebeck coefficient Sc

SC = −
V1 − V2

�T
=

1

eT

dE�E − EF�T21�E�f0�1 − f0�


dET21�E�f0�1 − f0�
. �7�

III. NUMERICAL RESULTS AND DISCUSSION

In the numerical calculations, we set the carbon-carbon
distance a=0.142 nm and the hopping energy t=2.75 eV as
in a real graphene sample.4,5 Throughout this paper the en-
ergy is measured in the unit of t. The magnetic field B is
expressed in terms of magnetic flux BS0 in the unit of �0 /�,
where S0= 3

2
�3a2 is the area of a honeycomb unit cell and

�0=� /e is the flux quanta. If we set BS0=0.001�0 /�, the
real magnetic field is around 4 T. The width of the graphene
ribbon is described by an integer N, and the corresponding
real width is 3Na for zigzag edge nanoribbon and �3Na for
the armchair edge nanoribbon. In the schematic setup-1I and
setup-1II in the inset of Fig. 1�b�, N=2. In the presence of
the strong perpendicular magnetic field, since transport prop-
erties are independent of the chirality, we choose the setup-1I
shown in the left inset of Fig. 1�b� to study the Nernst effect
and the setup-1II shown in right inset of Fig. 1�b� to study
the Seebeck effect. On the other hand, when the magnetic
field is zero, the Seebeck effect strongly depends on the edge
chirality, so we will study both zigzag and armchair edge
nanoribbons, respectively.

A. Strong perpendicular magnetic field case

First, we study the system with strong perpendicular mag-
netic field. Figure 1 shows the Nernst coefficient NC and
Seebeck coefficient SC versus Fermi energy EF for different
temperatures T=0.001t, 0.003t, 0.006t, and 0.01t. Consider-
ing the ambipolar nature of the graphene and the electron-
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hole symmetry, the Nernst coefficient NC is an even function
of EF�NC�EF�=NC�−EF��, because both the energy E−EF
and the direction of the particle movement �or T21−T23� re-
verse their signs under the electron-hole transformation.
From Fig. 1�a�, we see that the Nernst coefficient NC show
peaks when EF passes the LLs En=sgn�n��2e�vF

2 �n�B and
show valleys between adjacent LLs. With the increase in the
temperature, the peak heights roughly remain unchanged, but
the valleys rise. For convenience, the peaks are numbered
and the peak at EF=0 is denoted as the zeroth peak. In the
low-temperature limits, for the nth peak with n�0, the
height is �ln 2 / �n��, and the zeroth peak height is �2 ln 2�. In
Fig. 2�a� we plot inverse of the peak heights versus the peak
number n �see the crossed circle symbols� at the low tem-
perature T=0.001t. It satisfies the relation ��n� / ln 2�. For
comparison, the inverse of the peak’s height for the conven-
tional metal is also plotted �see dotted pentagram symbol�,
which is ��n+1 /2� / ln 2�.

In Fig. 1�b�, we plot the Seebeck coefficient SC versus EF
at different temperatures T. Similarly, the Seebeck coefficient
SC display peaks when EF passes the LLs and show valleys
between adjacent LLs. However, SC shows two essential dif-
ferences from the Nernst effect: first, SC is an odd function of
EF, which means that contributions to SC from electrons and
holes differ by a sign due to the electron-hole symmetry. So
the Seebeck coefficient SC is negative for EF
0. Second,
when EF is on the zeroth LL, SC is zero instead of the highest
peak in the curve of NC-EF. This is because the zeroth LL
with the fourfold degeneracy is shared equally by electrons
and holes and the electrons and holes give the opposite con-
tributions to SC. The inverse of the peak height of Seebeck

coefficient at the low temperature �kBT=0.001t� is plotted in
Fig. 2�b�. It is found that in graphene, the pseudospin-related
Berry phase2 introduces an additional phase shift in the
magneto-oscillation of TEP. As a result of this phase shift,
the inverse of peak height is �n �see the crossed circle sym-
bol in Fig. 2�b��. While in the conventional metal or semi-
conductor with massive carriers, there is no pseudospin-
related Berry phase, the inverse of peak height is �n+ 1

2 �see
dotted pentacle symbol in Fig. 2�b��.

Next, we study the temperature effect. Since TEP �Nernst
effect or Seebeck effect� represents the entropy transported
per unit charge, both Nernst coefficient and Seebeck coeffi-
cient increase with the increasing temperature which are ex-
hibited in Figs. 1�a� and 1�b�. To take a closer look in Fig. 3,
we plot the zeroth and first peak for the temperature range
��0.001t ,0.029t� in the step of 0.002t. The temperature ef-
fect of SC is similar to that of NC, so we only show the
Nernst coefficient SC in Fig. 3�a�. At low temperatures, with
the increase in the temperature kBT, the peak height and po-
sition do not vary much, but the peak half width is broadened
proportional to kBT, so the valley between the LLs rises.
When the temperature kBT exceeds the spacing of nearest
LLs, the Nernst and Seebeck coefficients NC and SC are en-
hanced in the whole range of energies including both the
peak and valley because of the overlap of the neighboring
peaks. In addition, except for the zeroth peak, the peak po-
sitions for all other peaks shift toward the zeroth peak.

Now we study the disorder effect on the Nernst and See-
back effect. To consider the effect of disorder, random on-
site potentials ��i in the center region are added with a uni-
form distribution �−W /2,W /2� with disorder strength W.
The data is obtained by averaging over up to 1200 disorder
configurations. It is known that when the magnetic field is
absent, the Seebeck effect is strongly affected by the disor-

FIG. 2. �Color online� The panels �a� and �b� are, respectively,
the inverse of peak height of Nernst and Seebeck coefficients vs the
peak number n. The crossed circle symbols are for the graphene and
dotted pentagram symbols are for the conventional metal. The tem-
perature kBT=0.001t and other parameters are the same as Fig. 1. In
panel �a�, the two lines are �n� / ln 2 and �n+1 /2� / ln 2, and in panel
�b� the two lines are n / ln 2 and �n+1 /2� / ln 2.

FIG. 3. �Color online� Panel �a�: the magnifications of the zeroth
and first Nernst peaks in Fig. 1�a�. Along the arrow direction, tem-
perature kBT increases from 0.001t to 0.029t with increment of
0.002t. Panel �b�: the disorder effect of panel �a� at a fixed tempera-
ture kBT=0.01t.

XING, SUN, AND WANG PHYSICAL REVIEW B 80, 235411 �2009�

235411-4



der, and the peaks are suppressed even in the small disorder.
On the other hand, in the presence of the strong magnetic
field, the Seebeck effect and Nernst effect are robust to the
disorder, because of the existence of the quantized Landau
level. The bigger the sample is �or the stronger the magnetic
field is�, the more robust the Nernst effect and Seebeck ef-
fect. Similar to Fig. 3�a�, in Fig. 3�b� we plot the zeroth and
first peak at fixed temperature kBT=0.01t with different dis-
order strengths. Here sample size �N=40� is smaller than that
in Fig. 1�a� �in which N=80�. With the smaller sample size,
the zeroth universal values of peak height 2 ln 2 can still
remain until disorder W is larger than 1t. For the first peak,
the universal values of height ln 2 / �n� remains at W=0.3t and
washes out at stronger disorder. It means that the Nernst peak
corresponding to the lower Landau level can resist stronger
disorders. In fact, this effect of disorder has been studied for
the thermal response to the charge current20 or to the spin
current.29 So, in the following, we will focus only on the
clean system.

B. Case of zero magnetic field

In this section, we study the TEP at zero magnetic field.
Because there is no Lorentz force to bend the trajectories of
the thermally diffusing carriers, the Nernst effect is absent
and NC=0. At B=0, the Seebeck coefficient SC is strongly
dependent on the chirality of graphene ribbon. In addition,
for the armchair edge ribbon, it is metallic when N=3M −1
�M is an integer� and insulator otherwise.6 The Seebeck co-
efficient SC has essential difference for the metallic and in-
sulator armchair ribbons. In the following we consider three
different systems: �1� zigzag edge ribbon with width N=40
�sketched in inset of Fig. 4�a��, �2� metallic armchair edge
ribbon with width N=41 �sketched in inset of Fig. 4�b��, and
�3� insulating armchair edge ribbon with width N=40
�sketched in inset of Fig. 4�b��. Figures 4�a�–4�c� show the
Seebeck coefficient SC versus EF for the above three sys-
tems, respectively. For the convenience of discussion, we
also plot corresponding transmission coefficient T=T21=T12
versus EF in each panel. We can see that SC is an odd func-
tion of EF and SC increases when the temperature increases.
In addition, SC peaks when Fermi energy crosses the discrete
transverse channels where quantized transmission coefficient
jumps from one step to another. These properties are similar
for the above three cases.

But there are also many essential different behaviors. �1�.
For the zigzag edge ribbon, the transverse channels are equi-
distant with the energy interval �= �t�� / �2N� in the conduc-
tion band or the valence band �except that the interval from
the first transmission channel in the conduction band to the
first transmission channel in the valence band is 3��. So
peaks of SC are uniformly distributed over energies and the
peak height of SC satisfies �ln 2 /2n� where n is the peak
number �see Fig. 4�a��. �2�. In metallic armchair edge ribbon,
however, the transverse channel and consequently the peaks
of SC are irregularly distributed. The peak height of SC is
closely related to the transmission coefficient T=T21=T12
and it can be expressed as 2�T ln 2 / �2T+�T� at low tem-
peratures, where �T is the change in T when EF scans over

the certain transverse channel. With increasing of the tem-
perature, some of peaks that are very close to each other
merge together so that both peak height and position are
irregular �see Fig. 4�b��. �3�. Finally, for the insulating arm-
chair edge ribbon, except for the irregularly distributed peaks
for �EF�
�, the Seebeck coefficient SC is very large for EF
near the Dirac point �0� at low temperatures. Figure 5 mag-
nifies the curves of SC-EF near the Dirac point. At low tem-
peratures, SC can be very large when EF approaches the

FIG. 4. �Color online� Seebeck coefficient SC vs Fermi energy
EF for the different temperatures kBT at zero magnetic field. Panel
�a� is for the zigzag ribbon as sketched in the inset of panel �a� with
the width N=40. Panel �b� and �c� are for the armchair ribbon
sketched in inset of panel �b� with the width �b� N=41 and �c� N
=40. The gray solid curves in panels �a�, �b�, and �c� are the corre-
sponding transmission coefficients T.

FIG. 5. �Color online� The Seebeck coefficient of Fig. 4�c� with
the Fermi-energy interval �−0.03,0.03�.
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Dirac point. For example, SC can reach about 10 at T
=0.0022t. At the Dirac point the sign of SC changes abruptly.
This is because near the Dirac point the transmission coeffi-
cient T12 is zero and the carriers cannot be transmitted. In
order to balance the thermal forces acting on the charge car-
riers, we have to add a very large bias leading to a very large
Seebeck coefficient near the Dirac point at low temperatures.
When temperature increase such that kBT is greater than the
gap of the insulating armchair edge ribbon SC decreases
gradually. We emphasize that if the armchair edge ribbon is
narrow enough �such as W�10 nm as in our calculation�,
SC�10 at the temperature T=0.0022t /kB�60 K. This very
large SC can be observed in the present technology.

C. Crossover from zero magnetic field to high magnetic field

In this section, we study the Nernst and Seebeck effect
when the magnetic field varies from zero to finite values
�strong magnetic field�. At zero magnetic field, the Nernst
coefficient NC is zero and the Seebeck effect SC is dependent
on the chirality of graphene ribbon. At high magnetic fields,
however, both NC and SC are independent of the ribbon
chirality. What happens with the magnetic field in the inter-
mediate range?

First, we study the Nernst effect, in which two different
setups �the setup-6I and setup-6II� sketched in the top of Fig.
6 are considered. In Fig. 6 we plot the Nernst coefficient NC
versus EF at different temperatures and magnetic fields.
From Figs. 6�a�–6�c�, the magnetic field increases from weak
to strong enough to form edge state. At the weak magnetic
field �such as BS0 /�0=0.0005 /��, the Nernst coefficient NC
peaks sharply near the Dirac point at low temperatures. Be-

cause on two sides of the Dirac point, the carriers are elec-
tronlike and holelike and they are shifted to the opposite
direction under the weak magnetic field, the Nernst effect is
largest at the Dirac point.

In particular, in the setup-6I, the Nernst coefficient NC is
very large at the Dirac point, which is much larger than that
in setup-6II and in the case of high magnetic field. Because
for the setup-6I, the longitudinal leads �lead 1 and lead 3� are
metallic with a large transmission coefficient but the trans-
verse leads �lead 2 and lead 4� are almost insulator near the
Dirac point. As a result, we have to add a much larger bias to
balance the thermal current so that the Nernst coefficient NC
is very large in the setup-6I at the low magnetic field �see
Figs. 6�a�, 1, 6�b�, and 1�. With increasing of B, LLs are
formed one by one. The zeroth LL located at the Dirac point
is formed first �at about BS0 /�0=0.0015 /�, not shown�, then
is the first LL, the second, and so on. For example, In Fig.
6�a�, no LL is formed while in Fig. 6�b�, the zeroth, first, and
second LL are formed. As soon as LLs are formed, the
Nernst coefficient NC will satisfy the relation that its peak
heights are equal to ln 2 / �n� �or 2 ln 2 for n=0�. From Fig.
6�c�, we can see that as BS0 /�0=0.005 /�, electrons �or
holes� with Fermi energy �EF��0.3t all belong to robust edge
states. In this case, the Nernst coefficient NC are almost the
same for the setup-6I and setup-6II.

For the Seebeck effect, armchair edge ribbon can either be
metal or insulator, we also consider three different systems as
in the case of zero magnetic field. In Fig. 7 we plot the
Seebeck coefficient SC versus EF at different temperatures
and magnetic fields for three different systems. The first col-
umn is for the zigzag edge ribbon with width N=80, the
second column is for metallic armchair edge ribbon with N
=80, and the third column is for insulating armchair edge
ribbon with N=81. From Figs. 7�a�–7�c�, the magnetic field
increases gradually. We can see that in the weak magnetic
field, the peaks of SC are still regularly distributed for the
zigzag ribbon and are irregular for the armchair ribbon due to
the different band structure for the zigzag edge and armchair
edge ribbon. Moreover, for the insulating armchair edge rib-

FIG. 6. �Color online� Panels �a�–�c� plot the Nernst coefficient
NC vs Fermi energy EF at different temperatures kBT=0.001t,
0.005t, and 0.01t in the magnetic field BS0=0.0005�0 /�,
0.002�0 /� and 0.005�0 /�, respectively. In left panels the thermal
gradient is added along the zigzag edge ribbon as shown in the left
top sketch. While in the right panels, the thermal gradient is added
along the armchair edge ribbon as shown in the right top sketch.
The ribbon width N=80.

FIG. 7. �Color online� Panels �a�–�c� plot the Nernst coefficient
NC vs Fermi energy EF at different temperatures kBT and different
magnetic fields BS0 /�0. The other parameters and the chirality of
ribbon for the first, second, and third column panels are the same as
Figs. 4�a�–4�c�, respectively.
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bon, the energy gap near Dirac point is diminished because
of the magnetic field B, the very high and sharp SC at B=0
�see Fig. 5� is gradually dropped with the increasing of B.
But at the weak magnetic field BS0 /�0=0.0005 /�, the NC
can still reach 3 �see Fig. 7�a� and 3�, which is much larger
than all peaks of SC in the high magnetic field case. Similar
to Fig. 6, with the increasing of B further, the LLs is gradu-
ally formed from Dirac point to the high EF, the properties of
SC for three systems gradually tend to the same. At the high
magnetic field BS0 /�0=0.005 /�, LLs are completely formed
for �EF�
0.3, then Seebeck coefficient SC for three different
systems are all the same to that in the Hall region.

IV. CONCLUSION

In summary, by using the Landauer-Büttiker formula
combining with the nonequilibrium Green’s-function
method, the Nernst effect in the crossed graphene ribbon and
the Seebeck effect in the single graphene ribbon are investi-
gated. It is found that due to the electron-hole symmetry, the
Nernst coefficient NC is an even function while the Seebeck
coefficient SC is an odd function of the Fermi energy EF. NC
and SC show peaks when EF crosses the Landau levels at
high magnetic fields or crosses the transverse subbands at the
zero magnetic field. In the strong magnetic field, due to the
fact that high-degenerated Landau levels dominate transport
processes the Nernst and Seebeck coefficients are similar for

different chirality ribbons. The peak height of NC and SC,
respectively, are �ln 2 / �n�� and �ln 2 /n� with the peak num-
ber n, except for n=0. For zeroth peak, it is abnormal. Its
peak height is �2 ln 2� for the Nernst effect and it disappears
for the Seebeck effect. While in zero magnetic field, Nernst
effect is absent and the Seebeck effect is strongly dependent
on the chirality of the ribbon. For the zigzag edge ribbon, the
peaks of SC are equidistant but they are irregularly distrib-
uted for armchair edge ribbon. Surprisingly, for the insulat-
ing armchair edge ribbon, the Seebeck coefficient SC can be
very large near the Dirac point due to the energy gap. When
the magnetic field increases from zero to high values, the
irregularly or regularly distributed peaks of SC in different
chiral ribbons gradually tends to be the same. In addition, the
nonzero values of the Nernst coefficient NC appear first near
the Dirac point and then gradually in the whole energy re-
gion. It is remarkable that for certain crossed ribbons, the
Nernst coefficient NC at weak magnetic fields can be much
larger than that in the strong magnetic field due to small
transmission coefficient in the transverse terminals.
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