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Abstract

To predict ordering probabilities of a multi-entry competition

(e.g. horse race), two models have been proposed. Harville (1973)

. 1
proposed a simple and convenient model that people can easily use in

practice. Henery (1981) proposed a more sophisticated model but it
has no closed form solution. In this paper, we empirically compare
the two models using a series of logit models applied to
horse-racing data. In horse-racing, many previous studies claimed
that the win bet fraction is a reasonable estimate of the winning
probability. To consider more complicated bet types (e.g. exacta,
place & show), ordering probabilities {e.g. P(horse i wins and horse
j finishes second} ) are required. The Harville and Henery model
assume different running time distribution and produce different sets
of ordering probabilities. This paper illustrates that the Harville
model is not always as good as the Henery model in predicting
ordering probabilities. The theoretical result concludes that if the
running time of every horse is normally distribufed, the
probabilities produced by the Harville model have a systematic bias
for the extreme cases (the strongest and weakest horses). We
concentrate on horse-racing case but the methodology can be applied

to other multi-entry competitions.

Keywords : Ordering probabilities; Running time distributions; Horse

races
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1. Introduction

In the pari-mutuel betting system of horse-racing, it is useful
to predict P(horse i finishes 1st and horse j finishes 2nd) from the
simple knowledge of the winning probabilities, i.e. P(horse i wins).
For more complicated bets such as the exacta and trifecta, even
on-track bettors cannot observe the changes of odds and thus another
source of information is required in order to predict the finishing
order probabilities. One reasonable estimate of the win probabilities
is the win bet fraction. Previous empirical studies showed that the
win bet fraction is gquite consistent with the true winning
probability although a favourite-iongshot bias sometimes exists (e.g.
Griffith (1949); McGlothlin (1956); Hoerl & Fallin (1974); Ali
(1977); Synder (1978); Fabricand (1979); Hausch, Ziemba & Rubinstein
(1981); Asch, Malkiel & Quandt (1982); Busche & Hall (1988)).

In this paper, we compare the two models proposed by Harville
(1973) and Henery (i1981). The former one is simple and easy to use
but the latter one is much more complicated. We will consider
estimation of ordering probabilities using the two models, including
theoretical discussion of the difference between the Harville and
Henery models. Section 2 will briefly review the Harville and Henery
models. Empirical analysis and theoretical discussion will be given

in sections 3 and 4, respectively, with conclusions in section 5.

2. Description of some proposed models

2.1 Harville model

The simplest and most commonly used model to estimate ordering
probabilities is the one proposed by Harville (1973). The basic idea
is simple. For instance, to predict P(horse i wins and horse |
finishes 2nd), we may use :

nn
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if L8 and TI'.'j are known ( nl’s can be estimated by bet fractions). A
similar idea was also mentioned in Plackett (1975). Moreover, it is
the ranking model proposed by Luce & Suppes (1965) in the study of

choice behaviour. As interpreted in Harville {1973), this model

far.



issuines that the event that horse j ranks zhead of all the other.
horses, save possibly horse i, is independent of the event that horse
i wins.

At a first glance, the above formula may seem reasonable and
thus, some researchers used this method for estimating probabilities
(e.g. Hausch, Ziemba & Rubinstein (1981)). It is also known that some
bettors use this method. However, “]|1 may not be equal to nj/(l-nl]
in general. One common argument is mentioned in Hausch, Ziemba and
Rubinstein (1981) : "no account is made of the possibility of the
Silky Sullivan problem; that is, some horses generally either win or
finish out-of-the-money; for these horses the formulas greatly
over-estimate the true probability of finishing second or third".

One reasonable way to find these ordering probabilities is to
assume an underlying probability distribution for the running times
of horses. It can be easily shown that if the running times follow
exponential distributions independently with different mean running
times, the above formula will be obtained.

McCulloch and Van Zijl (1986) gave a direct test for the
Harville model and indicated that the model had a bias. However,
their paper depended on the assumption that the show bet fraction for
their New Zealand data was the same as the corresponding true

crdering probabilities.

2.2 Henery model

Henery (1981) suggested to assume that the running times are
independent normal with unit variance, ie. T  ~ N(Gl,l)
independently. The resulting probabilities are obviousiy thé same as

that of a general constant variance model. Under the Henery model,

o« o
PIT <T, <..Ti= | §it-0) o] gt -e) at at
s t
n-1
where cI)(.) is the density function of standard normal distribution,
However, computing the above probability is difficult and even
computing rrij is not easy because, unlike the Harville model, no
closed form solution exists. Henery suggested to use the following

approximation :
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where £ = <I>_l(l/n!}, ui;n is the expected value of the ith standard
normal order statistic in a sample of size n.

(1) is obtained by using Taylor’s expansion about 8=0 for the term
inside the large bracket.

Using similar methods,
ei l'Ll:n

P [Ti is smallest] = & [ R m 1 (2)
where z = ¢'(1/n).
Henery (1981) also suggested another approximation method but that
produces many negative probabilities in our experience, thus we only
consider the kind of approximations mentioned above in this paper.

Hence, by using (2), we can have estimates of 6 if n is
known or the win bet fractions are good estimates of n. Then, we may
substitute the estimated values of 6 in appropriate equations to

obtain estimates of ordering probabilities.

For example,

P (T1< T < others)
' ) 0+ 6 )n + i )
j 1;n 2in 1

R

¢{a+al Blu‘l;n+ ejuz;n+ n-2

where a = (b-l[rniﬁ] and y = m here.

In practice, to satisfy the unit-sum constraint, simple scaling
is usually necessary.

As exponential and normal distributions may be considered as
special cases of the gamma distribution (with 2 extreme values of
shape parameters), the Harville and Henery models can be considered
as special cases of the model proposed by Stern {1990) who suggests

gamma running times with a fixed shape parameter.

3. Conditional logistic analysis for Harville & Henery models

Bacon-Shone, Lo & Busche (1992,a) based on a complicated

model-Titting process, suggested using the simple constant-8 model in



order to analyse win bet data, i.e. ==

g
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where w = P(horse i wins),
Pi = Win bet fraction of horse i,
i .e. the proportion of win bet on horse i,
B is a parameter to be estimated by maximum likelihood assuming the

win event follow;s a multinomial distribution.
The above model can be rewritten as follows :

ln[ni/ nk) =g ln(Pl/ Pk) for any i,k (i=k)
which means the multivariate logit of the win probability depends on
the logit of the bet fractions in a very simple way. Using a similar
structure for conditional probabilities, we have :

Infln , /%, )=pIn(P, 7P ) for any i,j.k
i x| i T (i% k)

where © P({ horse j finishes second | horse i wins )

i
P( horses i & j finish first & second resp.)

P ( horse i wins }
= /.
1] H
Similarly, we define :
rr”k= P(horse i finishes ist, j finishes 2nd and k finishes 3rd)

and other notations such as etc. are

T, =N ,
k|1 m | 13k

self-explanatory.
To study how good the Henery model is when compared to Harville

model, we can :fit the following series of models for conditional

probabilities :
logitnm | = logit P
4 jli p log 3 I \
logit T[k1l_1 = w logit Pkl '
(3}
logit “l|ijk = g logit P1 |1jk



where all P’s on the right hand side of (3) are the conditional

probabilities estimated by the Harville model and all the logits are
multivariate. Replacing all these P's by the conditional
probabilities estimated by the Henery model, we are able to observe
the more general patterns of bias for the two models.

To simplify our analysis, the approximation method proposed by
Henery (1981) is employed in this section since exact computations

involve lots of higher dimensional integrations. For each race,

P(T <...<T | T <...<T )
i1 iq i1 1,q-1
9

q
@{Cq+vq[r29 pu + £e6 zTu /(n-q)l}

=1 lr rin r=1 ir s=1 sjn
) q-1 q-1  g-1
* -q+
#{cC _, v B8 kot e Tu / (n-gH) ] y

(4)
for q = 2,3,...,n-1

_ 1
a ¢(CITP °
qn g

where C = ¢ '"(1/P), v
q nq
nP = n{n-1)...(n-g+1},

1l

] ith expected standard normal order statistic, and

I;n
n

total number of horses in the race.

Scaling is required to adjust the formula in (4) so that all
conditional probabilities sum to one.

We have chosen 600 S-horse-races from a Hong Kong (1981-89) data
set for this analysis. The data were collected from The Royal Hong
Kong Jockey Club (1981-90). In our case, n=8 and q=2,3,...,7. The

results are shown in Table 1 and Table 2.

Table 1

Conditional analysis for Harville model

q 2 3 4 5 6

parameter 0.8551 0.6675 0.5271 0.4480 ¢.3616 0.2369

estimates

1(1) -1055.22 -1015.53 -949.34 -827.77 ~-689.49 -463.94
!(para. -1052.60 -1000.77 -917.85 -791.94 -639.83 -409.33

est.)
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Table

- E Y

Conditional analysis for

q

parameter 1.1358 1.1002 1.0372 0.9681 0.7134
estimates

1(1) -1061.47 -1007.18 -921.83 —-641.77 -411.29

l(para. -1060.11 -1006.65 -921.78 -641.75 -410.45
est.)

{N.B. H i means leg 1lkelihood when the appropriale parameter

equale one.)

It is easier to observe the pattern of systematic differences
between the two models in fig. }1-3. From these tables and figures, it
is clear that the Harville model shows a systematic bias since the
estimated parameters are decreasing smoothly when g increases. That
means that the bias produced by the Harville model is more serious
if the conditional probability of a horse finishing in lower order

is to be estimated.

Figure |
Loglik diff (Henery — Harville)
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st Haville model

Figure 2

Estimated parameters under
the Harville model

:::::

estr Henery model

Figure 3

Estimated parameters under
the Henery model




On fhe other hand, the estimated parameters for the Henery model
are quite close to one for different q. Moreover, the log likelihoods
of the two models also show that the Henery model is generally much
better especially when q is large, but not better than the Harville
with estimated parameters ! {(Although the method of comparing log
likelihood values directly is naive given the non-nested models,
detailed Cox tests [Cox(1962)) reported in Bacon-Shone, Lo & Busche

(1992,b) for simpler comparisons support these conclusions.)

4. Theoretical investigation of the Harville and Henery models

In this section, the difference in estimating the conditional
probability of horse j finishing second given that horse i finishes
first {(denoted by nj ) by Harville and Henery models will be
theoretically investigated under the assumption that the Henery model

d
is correct. That is, we will study the following difference;

! 1 -n
[
Let 91= Expected running times of horse i = E{Ti).
Without loss of generality, we may assume 91< 92< wee € Bn.
{Note that n = 3. Otherwise, there is no need to discuss njll.)

To study (5), we need the following lemmas.

Lemma 1
lLet uyv and w are non-negative functions. Moreover, u is

non-decreasing and v/w is non-increasing, then,

Juv [ v

=

Tuw [ w

Or, if u is non-decreasing and v/w is non-decreasing, then

Ffuv T v :
= — (6)
Juw [ w

For the proof, see Gutmann and Maymin (1927).



Lemma 2

Define the following function :

¢(vio -0) d(v-0 +0 )
J i rgij i r N

J(v: BJ) =
SEI?(v+esdel]tgls¢(v-el+et)

then, J{v; 0 ) is non-decreasing in v, and
a
J(v; eb) is non-increasing in v,
where a=Minr , i.e. 8 = Min 6 and
a r
r#i r¥i

b=Maxr,i.e.Bb=Max9
T
r*i r#)

The proof of Lemma 2 is given in Appendix A.

Theorem 1

n LN
Ty - ® _ =<0 and T, - = 0
a|i i
1 - rrl 1 -m
where
a=Minr, i.e.® = Min 8 and
& r
r#*l r¥i
b= Maxr , i.e. 8b=Max9
r i r#El
Proof':

Consider the difference (7),

[++]
™, = J_mn - 8(u-0,+6)1_T 8(u-6 +6) ¢(u) du

o

L.

4 -n
Jjti} §

4]
T 8u-0+6) 4(u) du - J._mfgjo(u_ej+9r) ¢(u) du

where = P(T < Min {T })
iy s
s¥1]

10
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i.e. the probability of horse j wins if horse: i.is removed from the

race.
Therefore,
1tj 1 th
T T - T Tnm (11"[”— — .
. ")
Define g]|i = 'njm— i~ (8)

Thus, it suffices to show that galll = 0 and gbil = 0,
Rewrite :

4 T + .- - 7
](i](E 5 j] j

g _ s¥1 }
3|1 I-m
ymnm Y o= n T
ey 5 s?1) s(1) . Jin _ ] |
T Img, I
sE1j sELJ

Now, we consider :

T
301} }

J_mrﬂu‘““'efer] pu) du

00
Y R j=I>(u—F) +9t) ¢(u) du
s¥1j ¥ - ® ¥ .

o

J._wrgjé(u—ejwr] $lu) du

0
L I J #(u-0_+0) $(u) du

#1j ¥ -0

11



I 0, ,8(v-0 40 ) ¢(v-8 +6 ) dv

-

m
I ¥ tgsltb(v-el+9t] ¢(v—91+es) dv
- %1 )

I 6v) I, 8(v-0,40 ) ¢(v-0 +0 ) dv

-0

- o]
J. dvy ¥ tgsld:(v—eiﬂat) ¢(v-el+es) dv
- s#1 ]

by change of variables using :

v u_9]+9| in the numerator, and

v u-g +(-)i in the denominator.
s
= 0 when j=a

by using Lemma 2 together with Lemma 1

v

0 when j=b
Hence, g lls 0 and gb|12 0 and the required result follows.
-}

When n>3, we have only shown that the above result is valid for
extreme values of j. But for a<j<b, the difference may be greater
than or smaller than zero depending on the particular set of
(81,62,...,9n).

The above theorem means that if the running times satisfy the
assumption of the Henery model, the Harville model will overestimate
the conditional probability of the most favourite horse finishing
second and underestimate the conditional probability of the longshot
finishing second, providing a possible explanation of the "Silky

Sullivan" effect.

5. Conclusion

The results obtained in this paper support the conclusion that
the Harville model has a systematic bias in estimating ordering
probabilities based on our data set. On the other hand, according to
our data analysis, the Henery model does not cause any systematic

bias and thus it should be more reliable. Our theoretical result in

12
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section 4 analytically supports the systematic bias caused by the

Harville model when the Henery model holds.

APPENDIX A : Proof of Lemma 2
To prove lemma 2, we have to prove the following statement first.
Define :

hi{x) = %. where ¢(.) and &(.) are standard normal pdf

and cdf, respectively.

Then, it can be shown that h {x) > -1 for x € R.

Proof :

~x®(x )¢ (x)-p(x)° $(x) _ plx)p

h'(x) = = - x —=
<1>(x)2 olxy @(x)

When xz0,

¢(x) d(x)
consider the function 7—7 [—(—j x}J,

the minimum of this function occurs when x=0 since it is easy
to show that both ®(x)/¢(x) and &(x)/¢(x)-x are increasing

functions for xz0. Thus,

d(x) , P(x) &(0) 2
56 [mx [_”0 1° = 1.571 > 1

=>

Multiply (A.1) by (¢(x]/@(x)]2, we have :
h’{x) > -1 for xz0.

Now, for x<0,

let x = -y and thus y>0.

Then,

$(x) 'b(x)
(500 V- % 560 -

1- @[y) 12+ l-db(y)_l
$ly $(y)




o 4

®ly) 2 _
s Y !

®(y) . 1-28(y)+y¢(y)

¢(y)°

=

It is easy to show that :
aly) = 1-20(y) + y¢(y) > O

since a’(y) = -(1+y2)¢(y) < 0 => aly) is decreasing in y
(y>0)
=> a(y)>a(0) =1/2>0

Hence, by (A.1), it is also true that :

[ d(x) L d(x)
$(x) o(x}

-1>0 for x<0 (A.2)
Finally, from (A.1} and (A.2), we have :
h'(x} > -1 for x € R.

Now, we are geoing to prove lemma 2.

Consider the derivative of J(V;Bj] in (7) with respect to v :

d Jiv; BJ} )
{y ¢(v+ss—-el]tgis®(v—91+8t) }

s#l].

dv

= ¢[V+BJ-9l)rQu¢[v-el+9r)

¢(v-9 +0 )
{ [ sgqus(v".es—el]tEISO[v_el"-Bt) ] [ E m (V"’e] '9] ]
plv- 91+9t)
¢(v+e -9) <I>(v——9 +9] (Y 5= - (vi0 -0) ]] }
A [ e L 3=67+6) s
= ¢(v+ej-el)rg”¢(v-ei+er]
plv- 9 +0 ) ¢(v—01+9t]
{sguﬂﬂes_ei)tgls(b(v_elmt] E d(v- 9 +9 i ): (v-91+9ti

- [BJ- 95) ] }

14
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= ¢[v+91-91)rg’ j(::(\r-s~1+srr)

1) ¢{v-e’+es) ¢[v-91+9j]

where

Cs = ¢(v+es-el)tglso(v—el+et)

Recall that h{x} = ¢({x)/d(x}
then,
if j=a,

d J(v; Ga] 5

{szif(wes-eI]tgmﬂv—eia—et) }

d v

= ¢(V+9a'ei)rgu°(v"91+9r)

{BEHCE [[h'[vol + 1] (es— ea)] }

by the mean value theorem,

where v_e (v-8 +6 , v-0+8)
o] 1 a i s

=z 0 by the above result.

On the other hang, if j=b,

d J{v; Bb) )

{y ¢{V+Bs'9|]tﬂls°[“'en+et] }

s¥1b

d v

= ¢>(v+eb-91)rgih¢(v-el+er]

{): C [[-h'(v)-l](ﬂb—e)]}
s-‘-tlbs 4] &

by the mean value theorem,
where v e (v-8+8 , v-0 48 )

] 1 s } b
=0

We have shown that

15

¢(v-6 +0 ) ¢(v-8 +0)
{ZCS[ 1 s iJ_{ej—Bs1]}



d J[éi'é;) - d J(v; 6)

1A
(=

—av =0 —gy—

hence the result follows,
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