<table>
<thead>
<tr>
<th>Title</th>
<th>Evaluation of a rapid test for detection of H5N1 avian influenza virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chen, Y; Xu, F; Fan, X; Luo, H; Ge, S; Zheng, Q; Xia, N; Chen, H; Guan, Y; Zhang, J</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal Of Virological Methods, 2008, v. 154 n. 1-2, p. 213-215</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2008</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/59434</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; Journal of Virological Methods. Copyright © Elsevier BV.</td>
</tr>
</tbody>
</table>
Accepted Manuscript

Title: A rapid test for the detection of influenza A virus including pandemic influenza A/H1N1 2009

Authors: Yixin Chen, Feihai Xu, Xun Gui, Kunyu Yang, Xingrong Wu, Qingbing Zheng, Shengxiang Ge, Quan Yuan, Anthony E.T. Yeo, Jun Zhang, Yi Guan, Honglin Chen, Ningshao Xia

PII: S0166-0934(10)00026-1
DOI: doi:10.1016/j.jviromet.2010.02.001
Reference: VIRMET 11135

To appear in: Journal of Virological Methods

Received date: 5-11-2009
Revised date: 27-1-2010
Accepted date: 1-2-2010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A rapid test for the detection of influenza A virus including pandemic influenza A / H1N1 2009

Yixin Chen a, Feihai Xu a, Xun Gui a, Kunyu Yang a, Xingrong Wu a, Qingbing Zheng a, Shengxiang Ge a, Quan Yuan a, Anthony ET Yeo a, Jun Zhang a, Yi Guan b, Honglin Chen b, Ningshao Xia a,*

Running title: Rapid test for influenza A

a National Institute of Diagnostics and Vaccine Development in infectious diseases, School of Life Science, Xiamen University, Xiamen, China;
b State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;

* Corresponding author: Dr. Ningshao Xia
National Institute of Diagnostics and Vaccine Development in infectious disease, School of Life Sciences, Xiamen University, Xiamen 361005, China.
Tel. +86-592-2184110; Fax. +86-592-2181258;
E-mail. nsxia@xmu.edu.cn
Abstract

A new rapid diagnostic test for detection of influenza A virus was evaluated with four sets of experiments: first, a comparison with a commercial diagnostic kit against a panel of virus strains was conducted; second, the kit was tested against a collection of 40 strains of influenza A virus isolated from five different host species and 26 strains of other respiratory viruses used as controls; third, the kit was tested against specimens collected in the field obtained from human and chicken; and fourth, the kit was tested against the novel pandemic influenza A / H1N1 2009 clinical specimens obtained from admitted to hospital patients. The test kit displayed a sensitivity of 88% for both human specimens and avian specimens. The corresponding specificity was 99.3% for human specimens and 96.5% for avian specimens. This test kit may be useful for rapid diagnosis of influenza A virus.

Key words: influenza A; nucleoprotein; rapid test; Dot-ELISA
Rapid tests for influenza are useful for the assessment of influenza-like illness in the clinic. Additionally, such tests can serve as a tool for disease surveillance (Pachucki, 2005). Indeed, the current epidemic of swine-origin influenza A virus H1N1 (S-OIV H1N1) (Dawood et al., 2009) now designated as pandemic influenza A / H1N1 2009 (WHO, 2009) has highlighted the need of rapid influenza diagnostic tests to facilitate early treatment of infected individuals.

Current rapid tests for influenza A virus are usually produced with the monoclonal antibody against nucleoprotein (NP) of 498 amino acids length encoded by influenza A virus RNA segment 5 (Yang et al., 2008). The antigenic specificity of NP is related to host species and divided into at least five distinct host-specific groups, namely, human, avian, swine, equine, and gull (Gorman et al., 1990). However, influenza A / H1N1 2009 is different from the common human influenza A virus because it contains genes from avian, human, and swine influenza viruses (Dawood et al., 2009). Hence recent studies evaluating commercial rapid antigen tests with the pandemic H1N1 viral antigen in clinical specimens showed that the sensitivity ranged from 10% to 69%, and declined substantially with lower viral titers (CDC., 2009; Chan et al., 2009; Faix et al., 2009; Ginocchio et al., 2009). Thus some specimens with low viral titers will probably be undetected by using the rapid antigen test.

To overcome this sensitivity issue, a new rapid influenza A test, Flu A Dot-ELISA was developed (Wantai Biological Pharmacy Enterprise company, Beijing, China). This is a flow-through immunoassay that uses two influenza A virus NP specific monoclonal antibodies (mAb). One of the antibodies, immobilized on a
nitrocellulose membrane, serves as the capture antibody, and the other labeled with horseradish peroxidase is used as the detecting antibody. The procedure involves mixing 200μl of specimen with 400μl of lysis buffer. This mixture was filtered in a microtiter-like well that had a permeable membrane located at the bottom of the well with the antigen captured during the filtration process. The entire test procedure can be completed in 30 minutes and the results can be read visually (Chen et al., 2008).

Four sets of experiments were conducted to determine the properties of this assay. The first set of experiments was performed to compare the results of this kit with another commercial kit, Quick Vue Flu A test (Quidel Corp., San Diego, CA) against 10 strains of H5N1 influenza A viruses (Table 1). The detection limits of Flu A Dot-ELISA for the different influenza A strains ranged log\textsubscript{10} 2.4 to 4.8 TCID\textsubscript{50} (or 0.002 to 0.025 HA), which was 80 times lower than the detection limits of Quick Vue Flu A test. This sensitivity range is superior to many of the current rapid influenza tests (CDC., 2009; Chan et al., 2009; Hurt et al., 2007).

The second set of experiments used 40 strains of influenza A virus isolated from human, swine, avian, equine, and gull species and for controls, 26 strains of other respiratory viruses including 18 strains of influenza B virus, two strains of human parainfluenza viruses (HPIV), two strains of respiratory syncytial virus (RSV), two strains of adenovirus, and two strains of Newcastle disease virus. The detection limits for these influenza A strains ranged 0.01 to 0.001 HA units/0.2ml of sample, and there was no difference for the limit of detection for the current influenza A H1N1 virus.

Another notable feature was the broad range of influenza A viruses detected from
different host species. None of the 26 strains of non-influenza A respiratory virus described above (data not shown) reacted positively to the test.

The third set of experiments evaluated the performance of Flu A Dot-ELISA using nasal and throat swabs collected from patients in Southern China, and the tracheal and cloacal swabs collected from apparently healthy chickens in live poultry markets also in Southern China. Samples were tested in parallel by Flu A Dot-ELISA and by virus culture in 10-day-old embryonated SPF chicken eggs or MDCK cells (Chen et al., 2009). The sensitivity and specificity of Flu A Dot-ELISA for the human samples were 88.5% (69/78) and 99.3% (146/147), respectively; and the positive predictive and negative predictive values were 98.6% (69/70) and 94.2% (146/155), respectively. For avian specimens, the sensitivity and specificity of Flu A Dot-ELISA for the chicken samples were 88.1% (74/84) and 96.5% (83/86), respectively; and the positive predictive and negative predictive values were 96.1% (74/77) and 89.2% (83/93), respectively (Table 2).

The final set of experiments was an evaluation conducted in a cohort of real-time RT-PCR confirmed novel influenza A / H1N1 pharyngeal specimens obtained from hospitalized patients. The sensitivity was 94.5 (69/73, 95% CI: 85.8% to 98.2%).

These results show that the Flu A Dot-ELISA is highly sensitive and sufficiently specific against all the variants of influenza A virus examined. As the test can be accomplished rapidly and does not require extensive laboratory facilities, this may play a role for rapid diagnosis of influenza A virus.
Acknowledgements

We thank Prof. James Wai-Kuo Shih for helpful discussions and comments in this manuscript. This study was supported by National Natural Science Foundation of China (30901077); Important National Science & Technology Specific Projects (2008ZX10004-006); the project of Fujian Province (2008Y0059 & 2009YZ0002).
References

7. Ginocchio, C.C., Zhang, F., Manji, R., Arora, S., Bornfreund, M., Falk, L., Lotlikar,

Table 1

Detection of influenza A H5N1 virus by the Quidel Quick Vue Flu A+B and the Flu A Dot-ELISA

<table>
<thead>
<tr>
<th>Influenza A H5N1 Virus</th>
<th>Limit of Detection</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log_{10} TCID_{50}^{a}</td>
<td>HA titer^{b}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quidel Dot-ELISA</td>
<td>Quidel Dot-ELISA</td>
<td></td>
</tr>
<tr>
<td>Chicken/Hong Kong/YU22/02</td>
<td>5.9</td>
<td>3.9</td>
<td>0.256</td>
</tr>
<tr>
<td>Duck/Shantou/4231/03</td>
<td>6.4</td>
<td>4.4</td>
<td>2.56</td>
</tr>
<tr>
<td>Chicken/Malang/BBVET 4/04</td>
<td>4.9</td>
<td>2.9</td>
<td>1.024</td>
</tr>
<tr>
<td>Chicken/Guangxi/2439/04</td>
<td>4.4</td>
<td>2.4</td>
<td>2.048</td>
</tr>
<tr>
<td>Duck/Vietnam/283/05</td>
<td>6.1</td>
<td>4.1</td>
<td>0.128</td>
</tr>
<tr>
<td>Indonesia/5/05</td>
<td>4.1</td>
<td>3.1</td>
<td>0.204</td>
</tr>
<tr>
<td>Bar-headed Goose/Qinghai/15C/05</td>
<td>5.2</td>
<td>3.2</td>
<td>0.256</td>
</tr>
<tr>
<td>Little Egret/Hong Kong/718/06</td>
<td>5.1</td>
<td>3.1</td>
<td>0.256</td>
</tr>
<tr>
<td>Japanese White Eye/Hong Kong/1038/06</td>
<td>4.4</td>
<td>2.4</td>
<td>0.256</td>
</tr>
<tr>
<td>Goose/Guiyang/337/06</td>
<td>6.8</td>
<td>4.8</td>
<td>0.256</td>
</tr>
<tr>
<td>Mean</td>
<td>5.3</td>
<td>3.4</td>
<td>0.724</td>
</tr>
<tr>
<td>Relative sensitivity^{c}</td>
<td>~80</td>
<td>~80</td>
<td></td>
</tr>
</tbody>
</table>

^{a} TCID_{50}, 50% tissue culture infective dose;

^{b} HA titer = the reciprocal of the highest dilution of virus with complete hemagglutination;

^{c} Relative sensitivity = detection limit of Quidel Quick Vue A+B/detection limit of Flu A Dot-ELISA.
Table 2

Detection of influenza A virus in field samples by the Flu A Dot-ELISA

<table>
<thead>
<tr>
<th>Virus culture</th>
<th>Flu A Dot-ELISA</th>
<th>Human samples a</th>
<th>Chicken samples b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Influenza A positive</td>
<td>78</td>
<td>69</td>
<td>9</td>
</tr>
<tr>
<td>Influenza A negative</td>
<td>147</td>
<td>1</td>
<td>146</td>
</tr>
<tr>
<td>Total</td>
<td>225</td>
<td>70</td>
<td>155</td>
</tr>
</tbody>
</table>

Sensitivity

\[
\text{Sensitivity} = \frac{69}{78} \times 100\% = 88.5\%
\]

Specificity

\[
\text{Specificity} = \frac{146}{147} \times 100\% = 99.3\%
\]

Positive predictive value

\[
\text{Positive predictive value} = \frac{69}{70} \times 100\% = 98.6\%
\]

Negative predictive value

\[
\text{Negative predictive value} = \frac{146}{155} \times 100\% = 94.2\%
\]

a Human samples are nasal and throat swabs collected from patients in hospital and were tested by virus culture in MDCK cells and by the Flu A Dot-ELISA.

b Chicken samples are tracheal and cloacal swabs collected from healthy and diseased chickens in markets and poultry farms were tested by virus culture in SPF eggs and by the Flu A Dot-ELISA.