<table>
<thead>
<tr>
<th>Title</th>
<th>Melting of newly formed mafic crust for the formation of Neoproterozoic I-type granite in the Hannan region, South China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhao, JH; Zhou, MF</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal Of Geology, 2009, v. 117 n. 1, p. 54-70</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/58662</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Melting of Newly Formed Mafic Crust for the Formation of Neoproterozoic I-Type Granite in the Hannan Region, South China
Author(s): Jun-Hong Zhao and Mei-Fu Zhou
Published by: The University of Chicago Press
Stable URL: http://www.jstor.org/stable/10.1086/593321
Accessed: 21/01/2011 03:03
Melting of Newly Formed Mafic Crust for the Formation of Neoproterozoic I-Type Granite in the Hannan Region, South China

Jun-Hong Zhao and Mei-Fu Zhou

State Key Lab of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; and Department of Earth Sciences, University of Hong Kong, Hong Kong (e-mail: zhao-junhong@hotmail.com)

ABSTRACT

Neoproterozoic magmatism in the Hannan region at the northwestern margin of the Yangtze Block is characterized by numerous felsic plutons associated with minor mafic-ultramafic intrusions. The felsic plutons are either adakitic or normal-arc granitic in composition. The adakitic plutons are \(\sim 735 \) Ma in age and are interpreted as having formed by partial melting of a thickened lower mafic crust. Among the normal-arc-related felsic plutons, the Tianpinghe pluton is the largest and has a SHRIMP zircon U-Pb age of \(762 \pm 4 \) Ma, older than the adakitic plutons in the region. Rocks from the Tianpinghe pluton have relatively high Si\(_2\)O\(_6\) (67.1–70.1 wt%) and K\(_2\)O + Na\(_2\)O (7.8–8.6 wt%) and relatively low MgO (0.7–1.3 wt%) and Al\(_2\)O\(_3\) contents (14.5–15.6 wt%), with \(\text{Al}_2\text{O}_3/(\text{CaO} + \text{K}_2\text{O} + \text{Na}_2\text{O}) \{\text{A/CNK}\} \) values ranging from 0.95 to 1.08. They have arc-affinity trace-element compositions that are characterized by enrichment of large-ion lithophile elements and depletion of high-field-strength elements [Nb, Ta], with strong positive Pb and negative Ti anomalies. They have a narrow range of \(\varepsilon\text{Nd}(t) \) values \(+0.15\) to \(-1.76\) and relatively high zircon \(\varepsilon\text{Hf} \) values \(+0.6\) to \(+8.3\). These geochemical features are typical of I-type granites. The rocks from the Tianpinghe pluton have relatively young single-stage and two-stage Hf model ages \(1.01–1.31 \) and \(1.31–2.01 \) Ga, respectively, suggesting that the pluton was generated by partial melting of newly formed basaltic rocks. On the basis of its arc-related geochemical affinity and its emplacement before voluminous adakitic magmatism but after mafic-ultramafic intrusions, the Tianpinghe pluton is considered to be Neoproterozoic arc granite formed during a period of crustal growth and reworking. Generation of the later adakitic plutons suggests that the crustal thickness increased to more than 50 km by mafic magma underplating.

Online enhancements: color figures, tables.

Introduction

Calc-alkaline granitoids are the most abundant rock types in orogenic belts and can provide valuable information about the processes of continental crustal evolution and differentiation [e.g., Roberts et al. 2000; Ortega-Obregon et al. 2003; Kemp et al. 2007]. I-type calc-alkaline granitoids can be produced by melting of newly formed lower crust, fractional crystallization of mantle-derived mafic magmas, or mixing of mantle-derived magmas and continental felsic melts [e.g., Juster et al. 1989; Singer et al. 1992; Rudnick 1995; Soesoo 2000; Rajesh 2004; Cluzel et al. 2005; Kemp et al. 2007]. Thus, I-type calc-alkaline granitoids may provide information about the interaction between the mantle and the overlying continental crust [e.g., Kemp et al. 2007]. In addition, they can be used to discriminate tectonic settings and can help decipher the secular evolution of the continental crust [e.g., Pitcher 1993; Frost et al. 2001].

The Yangtze Block in South China, which is considered part of the supercontinent Rodinia (Li et al. 1995), is characterized by numerous Neoproterozoic I-type granitic plutons, with minor S-type granitic and mafic plutons along its western margin [e.g., Ling et al. 2001; Zhou et al. 2002a, 2002b, 2006a, 2006b; Li et al. 2003; Zhao and Zhou 2007a, 2007b, 2008a, 2008b]. Although their petrogenesis is not clear and remains controversial, the I-type granites are important for understanding the crust-mantle interaction, continental crustal growth, and reworking of the Yangtze Block. The most interesting problem in the region is the heat source neces-
sary for the formation of these plutons. Li et al. (2003) proposed that the felsic rocks were generated by an upwelling mantle plume; however, Zhou et al. (2002a) argued that they were formed at an active continental margin.

Numerous Neoproterozoic mafic-ultramafic, adakitic, and normal-arc-related felsic plutons crop out in the Hannan region, on the northwestern margin of the Yangtze Block (fig. 1). The mafic-ultramafic plutons are documented to have been produced by partial melting of lithospheric mantle above a subduction zone (Zhou et al. 2002a; Zhao and Zhou 2008b). The subsequent formation of the adakitic plutons probably reflects melting of a thickened lower crust (Zhao and Zhou 2008a). The normal-arc-related granitic plutons have not been examined in detail. This study focuses on the Tianpinghe pluton, the largest normal-arc-related felsic pluton in the region. As a representative example of arc-related magmatism, it is important for understanding the growth and reworking of continental crust in the region and for determining the tectonic setting in which it was emplaced along the northwestern margin of the Yangtze Block.

Geological Background

South China consists of the Yangtze Block to the northwest and the Cathaysia Block to the southeast (fig. 1), which were welded together during Meso- to Neoproterozoic time (Chen et al. 1991; Li and McCulloch 1996; Wang et al. 2007). The Yangtze Block is bounded by the eastern Tibetan Plateau to the west and is separated from the North China Block by the Qinling-Dabie orogenic belt, which was formed by closure of the easternmost part of Paleotethys (Mattauer et al. 1985; Hsü et al. 1987).

The Yangtze Block consists of Archean to Neoproterozoic basement complexes overlain by a Sinian to Cenozoic cover sequence. The basement complexes consist of arenaceous to argillaceous sedimentary strata that have been metamorphosed to low-grade greenschist facies assemblages. The Archean Kongling Terrane in the Yangtze Block consists of felsic gneisses, elastic metasedimentary rocks, and amphibolites (Gao et al. 1999). Mesoproterozoic rocks are also preserved along the margins of the Yangtze Block (Greentree et al. 2006; Li et al. 2007). The Neoproterozoic sequences along the western margin of the Yangtze Block consist of a lower sequence of volcanic rocks overlain by a thick

Figure 1. Simplified geological map showing the distribution of Neoproterozoic plutons in the Hannan region at the northwestern margin of the Yangtze Block, South China [modified from BGMRS 1990]. YB = Yangtze Block; TP = Tibetan Plateau; QDOB = Qinglin-Dabie orogenic belt.
Neoproterozoic magmatism in South China is characterized by numerous granitic plutons, with less abundant mafic-ultramafic plutons. Both the mafic-ultramafic and the felsic plutons intrude Mesoproterozoic rocks and are unconformably overlain by Sinian strata (Zhou et al. 2002a, 2002b; Li et al. 2003; Zhou et al. 2006a, 2006b; Zhao and Zhou 2007a, 2007b).

In the Hannan region on the northwestern margin of the Yangtze Block (fig. 1), pre-Sinian (>750 Ma) rocks are exposed in a belt more than 1200 km long (Zhang 1991) and are divided into three tectonostratigraphic units: from the base upward, the Houhe complex, the Huodiya Group, and the Xixiang Group (Ling et al. 2003).

The Archean-Paleoproterozoic Houhe complex consists of trondhjemitic gneisses, amphibolites, and migmatites, with minor marbles. The Mesozoic Neoproterozoic Huodiya Group unconformably overlies the Houhe complex and consists of metasedimentary rocks in the lower part and volcanic rocks in the upper part. The Neoproterozoic Xixiang Group is a metavolcanic-sedimentary succession with a total thickness of more than 4 km. It comprises a lower unit dominated by high-Mg andesite and low-Ti tholeiitic basalts and an upper unit composed of basalt, andesite, and dacite-andesite and low-Ti tholeiitic basalts and an upper unit composed of basalt, andesite, and dacite

The Tianpinghe pluton consists of coarse-grained granites composed of alkali feldspar (mode 50%–55%), quartz (mode 30%–35%), plagioclase (mode 10%), and biotite (mode 10%). The alkali feldspar is mainly microcline, which forms anhedral, commonly embayed crystals up to 1.5 × 5 mm. Quartz is interstitial and fine grained, with a diameter generally less than 0.5 mm (rarely up to 1 mm). Plagioclase forms small, irregular grains. Biotite is the only mafic mineral present and generally forms small aggregates, but a few inclusions of biotite may also occur in the microcline. Common accessory minerals include titanite, magnetite, and zircon. Samples show only slight alteration, with minor amounts of carbonate, kaolinite, and chlorite.

Many Neoproterozoic plutons in the Hannan region intrude the Archean to Mesoproterozoic strata and are unconformably overlain by unmetamorphosed Sinian strata, which are in turn overlain by Paleozoic strata (fig. 1). These plutons include mafic-ultramafic, adakitic, and normal-arc granitic plutons. The 820-Ma Wangjiangshan, 782-Ma Bijigou, and 814-Ma Beiba mafic-ultramafic intrusions form a 100-km-long belt from northeast to southwest (Zhao and Zhou 2008b). Adakitic plutons include the Wudumen and Erliba granodioritic plutons, which occur in the northeastern part of the region and have SHRIMP zircon U-Pb ages of 735 ± 8 Ma and 730 ± 6 Ma, respectively (Zhao and Zhou 2008a). Normal-arc granitic plutons occur as stocks mainly in the southwestern part of the Hannan region (fig. 1). The Tianpinghe pluton, one of the largest arc granitic plutons, was overlain by Sinian strata to the east and emplaced into the Beiba intrusion to the west (fig. 1; BGMRS 1989). Although Ling et al. (2006) reported a laser inductively coupled plasma–mass spectrometry (ICP-MS) 206Pb/238U age of 863 ± 10 Ma, interpreted as the crystallization age, these age data are inconsistent with the field relationships, which show that the Tianpinghe pluton is younger than the 814-Ma Beiba intrusion.

Petrography

The Tianpinghe pluton consists of coarse-grained granites composed of alkali feldspar (mode 50%–55%), quartz (mode 30%–35%), plagioclase (mode 10%), and biotite (mode 10%). The alkali feldspar is mainly microcline, which forms anhedral, commonly embayed crystals up to 1.5 × 5 mm. Quartz is interstitial and fine grained, with a diameter generally less than 0.5 mm (rarely up to 1 mm). Plagioclase forms small, irregular grains. Biotite is the only mafic mineral present and generally forms small aggregates, but a few inclusions of biotite may also occur in the microcline. Common accessory minerals include titanite, magnetite, and zircon. Samples show only slight alteration, with minor amounts of carbonate, kaolinite, and chlorite.

Analytical Results

SHRIMP Zircon U-Pb Dating. The results of SHRIMP U-Pb zircon analyses are listed in table 1. Sample TPH14, a granite from the Tianpinghe pluton, contains euhedral, oscillatory-zoned, igneous zircons with variable U contents. The majority of the zircons have cores, patches, and thin rim overgrowths with high U, generally >250 ppm. A small proportion of zircons with similar crystal morphology (<10%) have lower U concentrations (<150 ppm). The high-U zircons give relatively young 206Pb/238U ages and appear to have suffered minor Pb loss. Analyses of spots TPH14-01 and TPH14-02 were not used because the analytical spots overlapped high-common-Pb inclusions. Eight low-U zircons, which form a coherent group on the concordia diagram, have a weighted mean 206Pb/238U age of 762 ± 4 Ma, which we interpret as the crystallization age of the intrusion (fig. 2).

Major and Trace Elements. On the basis of CIPW normative mineralogy, rocks from the Tianpinghe pluton fall mainly in the granodiorite field in the QAP diagram, whereas they all lie in the granite field in the Ab-An-Or diagram. In the plot of total alkaline versus SiO2 (fig. 3a), rocks from the Tianpinghe pluton plot in the same classification fields
as quartz monzonite and granite. The Tianpinghe granites are alkali-calcic in composition, according to the classification scheme of Frost et al. (2001; fig. 3b). They are also metaluminous, with an alumina saturation index (ASI; molar Al2O3/(CaO + Na2O + K2O)) ranging from 0.95 to 1.08. The rocks from the Tianpinghe pluton range in SiO2 from 67.1 to 70.1 wt%, in MgO from 0.67 to 1.25 wt%, and in Al2O3 from 14.5 to 15.6 wt%. They have high K2O (3.2–4.1 wt%) and Na2O (4.2–5.2 wt%) contents, giving low K2O/Na2O ratios ranging from 0.64 to 0.99. Fe2O3, MgO, Al2O3, CaO, TiO2, and P2O5 all correlate negatively with SiO2.

All of the analyzed rocks have slightly U-shaped chondrite-normalized rare earth element (REE) patterns with strong enrichment in light REEs (LREEs) and display slightly negative Eu anomalies (Eu/Eu* = 0.73–0.95; fig. 4a). All of the samples also have a relatively narrow range of (La/Yb)N ratios (11.8–16.5). In primitive-mantle-normalized trace-element diagrams, the rocks show enrichment of large-ion lithophile elements (Rb, Ba, Th, and U) and depletion of Nb and Ta, with negative Ti and positive Pb and Zr-Hf anomalies (fig. 4b). They have low Sr (204–328 ppm) and high Y (14.7–22.3 ppm) concentrations, yielding low Sr/Y ratios of 11.1–20.7. Compatible trace elements, such as Cr, Ni, and V, are relatively low in abundance (table 2, available in the online edition or from the Journal of Geology office).

Whole-Rock Sr-Nd Isotopes. Rocks from the Tianpinghe pluton have low and constant initial 87Sr/86Sr ratios ranging from 0.7037 to 0.7053 and constant but slightly negative εNd values (+0.15 to −1.76; table 3). In the diagram of initial 87Sr/86Sr versus εNd(t), the samples plot near the mantle array (fig. 5). Their εNd(t) values are slightly lower than those of the Neoproterozoic mafic-ultramafic intrusions in the Hannan region (figs. 5, 6).

Zircon Lu-Hf Isotopes. Lu-Hf isotope analyses of zircons from four granite samples are presented in table 4, available in the online edition or from the Journal of Geology office, and are plotted in figures 7 and 8. Grain TPH14-19 has extremely low 176Lu/177Hf (0.000778) and 176Lu/177Hf ratios (0.281718), yielding a very low εHf value of −20.9, different from those of the other analyses (figs. 7, 8). It is characterized by very old single-stage (2.14-Ga) and two-stage (3.92-Ga) model ages. The other analyses yielded 176Lu/177Hf ratios ranging from

Table 1. SHRIMP Zircon U-Pb Analytical Results for the Tianpinghe Pluton in Hannan Region, South China

<table>
<thead>
<tr>
<th>Spot</th>
<th>Common 206Pb</th>
<th>U</th>
<th>Radiogenic 206Pb</th>
<th>232Th/238U ± 1a</th>
<th>206Pb/238U</th>
<th>207Pb/206Pb</th>
<th>Discordant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH14-01</td>
<td>15.76</td>
<td>278</td>
<td>20.4</td>
<td>.577 ± .3</td>
<td>528 ± 7.1</td>
<td>−79 ± 877</td>
<td></td>
</tr>
<tr>
<td>TPH14-02</td>
<td>33.17</td>
<td>259</td>
<td>29.1</td>
<td>.773 ± .2</td>
<td>794 ± 33.2</td>
<td>387 ± 2104</td>
<td></td>
</tr>
<tr>
<td>TPH14-03</td>
<td>...</td>
<td>86</td>
<td>9.29</td>
<td>.987 ± .4</td>
<td>762 ± 4.4</td>
<td>791 ± 33</td>
<td>4</td>
</tr>
<tr>
<td>TPH14-07</td>
<td>...</td>
<td>473</td>
<td>48.9</td>
<td>1.046 ± .2</td>
<td>733 ± 3.0</td>
<td>740 ± 14</td>
<td>1</td>
</tr>
<tr>
<td>TPH14-08</td>
<td>...</td>
<td>69</td>
<td>7.54</td>
<td>.806 ± .4</td>
<td>774 ± 5.6</td>
<td>780 ± 61</td>
<td>1</td>
</tr>
<tr>
<td>TPH14-16</td>
<td>0</td>
<td>279</td>
<td>28.9</td>
<td>.703 ± .2</td>
<td>733 ± 3.3</td>
<td>799 ± 19</td>
<td>9</td>
</tr>
<tr>
<td>TPH14-18</td>
<td>.28</td>
<td>118</td>
<td>12.7</td>
<td>.674 ± .3</td>
<td>756 ± 4.4</td>
<td>671 ± 55</td>
<td>−14</td>
</tr>
<tr>
<td>TPH14-19</td>
<td>.04</td>
<td>119</td>
<td>12.9</td>
<td>.631 ± .3</td>
<td>761 ± 4.2</td>
<td>761 ± 32</td>
<td>0</td>
</tr>
<tr>
<td>TPH14-22</td>
<td>1.24</td>
<td>386</td>
<td>38.5</td>
<td>.984 ± .2</td>
<td>708 ± 3.6</td>
<td>666 ± 93</td>
<td>−7</td>
</tr>
<tr>
<td>TPH14-27</td>
<td>...</td>
<td>83</td>
<td>8.98</td>
<td>.592 ± .4</td>
<td>765 ± 4.7</td>
<td>789 ± 35</td>
<td>3</td>
</tr>
<tr>
<td>TPH14-29</td>
<td>.21</td>
<td>300</td>
<td>32.2</td>
<td>.637 ± .2</td>
<td>760 ± 3.4</td>
<td>718 ± 33</td>
<td>−6</td>
</tr>
<tr>
<td>TPH14-30</td>
<td>.02</td>
<td>371</td>
<td>37.6</td>
<td>.922 ± .2</td>
<td>720 ± 3.1</td>
<td>780 ± 17</td>
<td>8</td>
</tr>
<tr>
<td>TPH14-31</td>
<td>...</td>
<td>384</td>
<td>38.3</td>
<td>.709 ± .2</td>
<td>708 ± 3.1</td>
<td>778 ± 16</td>
<td>10</td>
</tr>
<tr>
<td>TPH14-35</td>
<td>...</td>
<td>174</td>
<td>18.6</td>
<td>2.393 ± .3</td>
<td>759 ± 3.8</td>
<td>762 ± 24</td>
<td>0</td>
</tr>
<tr>
<td>TPH14-40</td>
<td>...</td>
<td>43</td>
<td>4.7</td>
<td>.634 ± .6</td>
<td>772 ± 6.2</td>
<td>731 ± 48</td>
<td>−6</td>
</tr>
</tbody>
</table>

Note. Sample TPH14 [a granite from the Tianpinghe pluton] was used.
0.000977 to 0.003058 and present-day $^{176}\text{Hf}/^{177}\text{Hf}$ ratios ranging from 0.282334 to 0.282575 (79 points). Initial $^{176}\text{Hf}/^{177}\text{Hf}$ ratios vary from 0.282314 to 0.282532, with an average of 0.282412 (fig. 7, top). The εHf values range from +0.6 to +8.3, with an average of 4.1. Single-stage model ages range from 1.01 to 1.31 Ga and two-stage model ages from 1.31 to 2.01 Ga. The weighted means of the single-stage and two-stage model ages are 1.17 ± 0.01 and 1.74 ± 0.07 Ga, respectively (fig. 7, bottom).

Discussion

Classification of the Tianpinghe Pluton as an I-Type Granitoid. Granitoids were originally divided into I- and S-type granites (White and Chappell 1983), which are different in petrography and geochemical composition (e.g., Collins et al. 1982; White and Chappell 1983). I-type granites normally have high Na$_2$O and CaO and low K$_2$O and alumina saturation (A/CNK) compared to S-type granites (Chappell and White 2001). In addition, I-type granites display more regular compositional variations than S-type granites because of their relatively homogeneous source regions (Chappell and White 2001).

Rocks from the Tianpinghe pluton form relatively linear trends in compositional-variation diagrams. They have moderate Na$_2$O and K$_2$O contents, with high Na$_2$O + K$_2$O contents and low K$_2$O/Na$_2$O ratios (table 2). The rocks are metaluminous, with A/CNK ranging from 0.95 to 1.08.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Rb (ppm)</th>
<th>Sr (ppm)</th>
<th>87Rb/86Sr</th>
<th>87Sr/86Sr ± 2σ</th>
<th>87Sr/86Sr</th>
<th>Sm (ppm)</th>
<th>Nd (ppm)</th>
<th>147Sm/144Nd</th>
<th>143Nd/144Nd ± 2σ</th>
<th>εNd</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH1</td>
<td>87.5</td>
<td>241</td>
<td>1.0534</td>
<td>0.715147 ± 0.000013</td>
<td>0.703686</td>
<td>3.29</td>
<td>19.6</td>
<td>0.1013</td>
<td>0.512109 ± 0.000013</td>
<td>-1.02</td>
</tr>
<tr>
<td>TPH3</td>
<td>79.9</td>
<td>310</td>
<td>0.7457</td>
<td>0.713462 ± 0.000010</td>
<td>0.705349</td>
<td>3.92</td>
<td>23.9</td>
<td>0.0990</td>
<td>0.512100 ± 0.000011</td>
<td>-0.98</td>
</tr>
<tr>
<td>TPH7</td>
<td>86.0</td>
<td>312</td>
<td>0.7987</td>
<td>0.713179 ± 0.000013</td>
<td>0.704489</td>
<td>4.17</td>
<td>24.4</td>
<td>0.1031</td>
<td>0.512133 ± 0.000012</td>
<td>-0.72</td>
</tr>
<tr>
<td>TPH10</td>
<td>66.5</td>
<td>306</td>
<td>0.6279</td>
<td>0.712138 ± 0.000011</td>
<td>0.705306</td>
<td>3.63</td>
<td>21.9</td>
<td>0.1005</td>
<td>0.512118 ± 0.000013</td>
<td>-0.77</td>
</tr>
<tr>
<td>THP14</td>
<td>88.9</td>
<td>315</td>
<td>0.8159</td>
<td>0.712882 ± 0.000010</td>
<td>0.704005</td>
<td>4.24</td>
<td>24.8</td>
<td>0.1031</td>
<td>0.512081 ± 0.000012</td>
<td>-1.76</td>
</tr>
<tr>
<td>THP17</td>
<td>89.7</td>
<td>314</td>
<td>0.8267</td>
<td>0.713142 ± 0.000010</td>
<td>0.704148</td>
<td>4.26</td>
<td>26.1</td>
<td>0.0987</td>
<td>0.512128 ± 0.000022</td>
<td>-0.40</td>
</tr>
<tr>
<td>THP20</td>
<td>82.2</td>
<td>328</td>
<td>0.7249</td>
<td>0.712485 ± 0.000009</td>
<td>0.704599</td>
<td>4.29</td>
<td>24.9</td>
<td>0.1042</td>
<td>0.512183 ± 0.000012</td>
<td>-0.15</td>
</tr>
<tr>
<td>TPH26</td>
<td>97.6</td>
<td>273</td>
<td>1.0342</td>
<td>0.715590 ± 0.000012</td>
<td>0.704338</td>
<td>3.88</td>
<td>23.5</td>
<td>0.0998</td>
<td>0.512081 ± 0.000013</td>
<td>-1.42</td>
</tr>
</tbody>
</table>
and \(\frac{\text{Al}_2\text{O}_3}{(\text{K}_2\text{O} + \text{Na}_2\text{O})} \) from 1.06 to 1.20. These geochemical features suggest that they are more likely to be I-type than S-type granites.

I-type granites can also be distinguished from A-type granites by their associated rock types, mineralogy, and bulk-rock chemistry (Bonin 2007). A-type granites are characterized by high \(\frac{\text{Fe}_2\text{O}_3}{\text{MgO}} (>16) \), \(\frac{\text{Na}_2\text{O} + \text{K}_2\text{O}}{\text{CaO}} (>10) \), \(\frac{\text{10000Ga}}{\text{Al}} (>2.6) \), and \(\text{Zr} + \text{Nb} + \text{Ce} + \text{Y} (>350 \text{ ppm}; \text{Whalen et al. 1987}) \). However, the rocks from the Tianpinghe pluton have relatively low \(\frac{\text{Fe}_2\text{O}_3}{\text{MgO}} \) (2.08–3.75), \(\frac{\text{Na}_2\text{O} + \text{K}_2\text{O}}{\text{CaO}} \) (3.41–9.39), and \(\frac{\text{10000Ga}}{\text{Al}} \) ratios (1.84–2.18). They also have low concentrations of high-field-strength elements and REEs. Their Nb contents range from 9.27 to 14.3 ppm, their Zr from 170 to 236 ppm, and their Zr + Nb + Ce + Y from 258 to 346 ppm. These geochemical compositions are significantly different from those of A-type granites but similar to those of I-type granites (Whalen et al. 1987). The Tianpinghe granites have less than 1 wt% normative corundum and have slightly negative \(\varepsilon_{\text{Nd}} \) (+0.15 to –1.76) and positive zircon \(\varepsilon_{\text{Hf}} \) values (+0.6 to +8.3). Therefore, the rocks from the Tianpinghe pluton are interpreted as I-type granites, as defined by Chappell and White (2001).

Origin of the Tianpinghe Pluton. Calc-alkaline I-type granites can be generated by various processes. Among these are differentiation of basaltic magmas (e.g., Soesoo 2000), mixing of basaltic magma with felsic crustal components (e.g., Juster et al. 1989; Singer et al. 1992; Kemp et al. 2007), and melting of basaltic crust (e.g., Chappell and White 2001; Wu et al. 2005).

Partial Melting of Ancient Crustal Rocks. The basement of the Yangtze Block is mainly composed of the Paleoproterozoic and Archean rocks (Gao et al. 1999; Qiu et al. 2000; Zhang et al. 2006a, 2006b; Zheng et al. 2006). The Archean rocks, i.e., the Kongling Terrane, consist of dioritic-tonalitic-trondhjemitic and granitic gneiss (DTTG), metabasite, and amphibolite. Both whole-rock Nd model ages and zircon U-Pb dating reveal several episodes of crustal growth in this terrane from 3.8 to 3.2 Ga (Gao et al. 1999; Qiu et al. 2000; Zhang et al. 2006a, 2006b). Multistage episodic reworking of the Archean crust occurred during the Paleoproterozoic to Neoproterozoic (Zhang et al. 2006b). It is therefore possible that the Tianpinghe granitic pluton represents one episode of reworking of the Yangtze basement.

As discussed in “Analytical Results,” the Tianpinghe granites have a narrow range of chemical compositions and relatively constant \(\varepsilon_{\text{Nd}} \) values that are much higher than the negative \(\varepsilon_{\text{Nd}} \) values.
as low as \(25 \) of the DTTG (fig. 6), suggesting that they were not produced by partial melting of the DTTG. Although the Tianpinghe granites plot within the upper amphibolite field (fig. 6), they have initial \(^{176}\text{Hf} / ^{177}\text{Hf} \) ratios higher than those of the basement rocks of the Yangtze Block, further suggesting that the Tianpinghe granites were not produced by partial melting of the Archean rocks (fig. 8). In addition, they have \(\text{Cr} / \text{Th} \) ratios (0.04–0.64) lower than those of the Archean basement rocks (\(\text{Cr} / \text{Th} = 0.67–11.600; \text{Sm}/\text{Nd} = 0.2–0.38; \text{Sr}/\text{Ba} = 0.61–47.3; \) fig. 9). In order to illustrate the trace-element variation relative to fractional crystallization, \(\text{Sm, La, Th, and Sc} \) were used to model fractional crystallization. The results show that fractional crystallization of mafic magmas cannot explain the high La and Th concentrations of the Tianpinghe granites. For example, the values of La and Th for the Tianpinghe granites (fig. 10) cannot be reached even with 80% removal of any mafic mineral from the assumed parental magma. Alternatively, fractional crystallization of mineral assemblage, including olivine, orthopyroxene, clinopyroxene, alkaline feldspar, and plagioclase, may have evolved the mafic parental magma into the Tianpinghe granite. Removal of plagioclase and alkaline feldspar increase Sc but does not modify Th, whereas fractional crystallization of mafic minerals strongly decreases Sc and slightly increases Th (fig. 10). Olivine is the strongest incompatible mineral among the mafic minerals (table 5), therefore, fractional crystallization of olivine is more effective for increasing Th in the melt than is the fractional crystallization of the mineral assemblage of variable proportions. After removal of 80% of olivine, Th in the melt is lower than that in the Tianpinghe granites. Thus, the Tianpinghe pluton was not generated by simple fractionation of mafic magma.

Alternatively, the I-type granites may have been generated by crustal contamination or mixing of mafic magma with crustally derived felsic magma (e.g., Lackey et al. 2005; Kemp et al. 2007). Granites generated by these processes are normally characterized by abundant mafic enclaves and a wide range of chemical compositions (e.g., Chappell 1996; Janousek et al. 2004). The granitic rocks from the Tianpinghe pluton have \(\text{SiO}_2 \) contents much higher and \(\varepsilon\text{Nd} \) values (+0.15 to −1.76) notably lower than those of the mafic rocks (\(\varepsilon\text{Nd} = 3.5–5.9; \) figs. 5, 6), suggesting that voluminous crustal assimilation would have been required to produce their high \(\text{SiO}_2 \). However, their narrow
range of SiO\textsubscript{2} and εNd values (figs. 3, 5) and the similar initial 176Lu/177Hf ratios of their zircons and the mafic rocks in the region (fig. 8) suggest that only minor crustal material was involved in their petrogenesis. Therefore, mafic magma differentiation, crustal contamination, and magma mixing cannot explain the geochemical features of the Tianpinghe pluton.

Partial Melting of Newly Formed Mafic Crust. Melting of basaltic rocks is another way in which I-type granitic magmas may be formed (Chappell and White 2001). The Tianpinghe granites have a minimum single-source-region age of 0.93 Ga, defined by the intersection between the depleted-mantle curve and the dashed horizontal line in figure 8 (176Lu/177Hf = 0). The rocks from the Tianpinghe pluton have single- and two-stage model ages of 1.01–1.31 and 1.31–2.01 Ga, respectively (table 4). With minor crustal contamination taken into consideration, the youngest two-stage model age of the 1.31 Ga represents the maximum resident time of their source rocks, suggesting that the Tianpinghe granites were more likely produced by melting of newly formed mafic rocks.

In the Hannan region, Neoproterozoic mafic intrusions with ages of 780–820 Ma (Zhou et al. 2002a) are common. Thus, it is possible that the Tianpinghe granites were produced by melting of mafic rocks geochemically similar to these mafic intrusions. An experiment of metabasalt dehydration melting reveals that the silicon concentration of melt decreases with an increasing degree of partial melting (Rapp and Watson 1995). A low degree of melting (<10%) produces melts that are highly silicic (Rapp and Watson 1995). To model such a melting process, we use the Neoproterozoic mafic-ultramafic rocks as the parental source of the Tianpinghe pluton (table 5). The source mineralogy

Figure 8. Initial Hf isotopic compositions at the crystallization age of the zircons for the Tianpinghe granites. Reference lines representing meteoritic Hf evolution and depleted mantle are from Blichert-Toft and Albarede (1997) and Griffin et al. (2000), respectively. The basement of the Yangtze Block is defined on the basis of zircon Hf isotopes for the Precambrian strata (Zhang et al. 2006a, 2006b) and the felsic granulite xenolith from Mesozoic volcanic rocks (Zheng et al. 2006) at assumed 176Lu/177Hf ratios of 0.015 and 0.009, respectively. The initial 176Hf/177Hf ratios for the Neoproterozoic mafic-ultramafic plutons in the Hannan region (HNM) are also shown for comparison (Zhao and Zhou 2008b).
is obtained from the CIPW calculation of the average bulk-rock compositions of the Bijigou, Wangjiangshan, and Beiba mafic plutons (fig. 1). Trace-element concentrations of the source region are obtained from the average concentrations in these three plutons. Calculation procedures and partition coefficients used for trace-element modeling are given in table 5. Batch melting calculations reveal that less than 5% partial melting of the mafic rocks will produce a melt with a chemical composition equivalent to that of the Tianpinghe pluton (fig. 10). The mantle-normalized trace-element patterns (fig. 11) also suggest that 5% melting of mafic rocks could have produced the Tianpinghe granites. Therefore, we suggest that the Tianpinghe granites were formed by low-percentage melting of newly emplaced mafic rocks.

The rocks from the Tianpinghe pluton have εNd values slightly lower than those of the Neoproterozoic mafic rocks (fig. 5), suggesting minor...
involvement of old crustal material during emplacement. One zircon analysis has an exceptionally low ε_{Hf} value of -20, which plots in the field of the basement of the Yangtze Block (fig. 8). Its old single- (2.14 Ga) and two-stage model ages (3.92 Ga) indicate that the zircon is a relict of Archean crustal material. The basement rocks have high Hf concentrations and low $^{177}Hf/^{176}Hf$ values (Zhang et al. 2006a, 2006b; Zheng et al. 2006; fig. 8), so that the addition of small amounts of old crustal material can significantly lower the $^{177}Hf/^{176}Hf$ ratio of the magma. The variable ε_{Hf} values (+0.6 to +8.3) of zircons from the Tianpinghe pluton suggest that assimilation of old crust played an important role in determining the magma composition. The highest ε_{Hf} value of +8.3 may represent the initial ε_{Hf} value of the melts, whereas the lowest ε_{Hf} value of +0.6 reflects contamination by older crustal components.

Implications for Neoproterozoic Arc-Related Magmatism. Zircon saturation temperatures calculated from bulk-rock compositions provide minimum estimates of initial magma temperature at the source (Miller et al. 2003). The Tianpinghe granites have Zr contents ranging from 170 to 237 ppm, corresponding to zircon saturation temperatures of about 1050°–1080°C (Miller et al. 2003). This conclusion is consistent with experimental results showing that tonalitic to granitic calc-alkaline magmas are normally generated by dehydration melting of fertile portions of the continental crust at temperatures above 780°C (e.g., Rapp 1995; Rapp and Watson 1995). Anatexis of continental crust under temperatures in excess of 780°C within continental collision zones requires advective input of heat from the mantle (e.g., Huppert and Sparks 1988; Roberts and Clemens 1993; Miller et al. 2003) accompanied by slow exhumation (Patino and McCarthy 1998). Such high temperatures are generally considered to have occurred in the deep crust and to have required significant heat input through under- or intraplating by mantle-derived basaltic magmas (e.g., Clemens 1990; Vielzeuf et al. 1990). Intraplating of basaltic magmas is thought to be responsible for the melting of refractory mafic rocks by fluid-absent breakdown to produce hot, water-undersaturated, calc-alkaline silicic magmas in an active continental margin. The 762-Ma Tianpinghe

Table 5. Trace Elements Used in the Modeling

<table>
<thead>
<tr>
<th>Partitioning coefficient D</th>
<th>Th</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Sm</th>
<th>Tb</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorthite</td>
<td>.01</td>
<td>.3</td>
<td>.22</td>
<td>.19</td>
<td>.12</td>
<td>.14</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>Albite/orthoclase</td>
<td>.02</td>
<td>.07</td>
<td>.02</td>
<td>.03</td>
<td>.02</td>
<td>.01</td>
<td>.03</td>
<td>.02</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>.1</td>
<td>.52</td>
<td>.84</td>
<td>1.4</td>
<td>2.9</td>
<td>3.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Orthopyroxene</td>
<td>.14</td>
<td>.4</td>
<td>.46</td>
<td>.6</td>
<td>.78</td>
<td>.85</td>
<td>.91</td>
<td>.9</td>
</tr>
<tr>
<td>Olivine</td>
<td>.01</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.35</td>
<td>.44</td>
</tr>
<tr>
<td>Apatite</td>
<td>2</td>
<td>20</td>
<td>35</td>
<td>57</td>
<td>63</td>
<td>54</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>.1</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>Magnetite</td>
<td>.01</td>
<td>.66</td>
<td>.71</td>
<td>.93</td>
<td>1.2</td>
<td>1.3</td>
<td>.44</td>
<td>.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composition [ppm]:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>.6</td>
<td>10.5</td>
<td>21.1</td>
<td>10.5</td>
<td>2.67</td>
<td>.47</td>
<td>1.41</td>
<td>.22</td>
</tr>
<tr>
<td>Under partial melting:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>11</td>
<td>31.19</td>
<td>53.27</td>
<td>18.94</td>
<td>3.55</td>
<td>.57</td>
<td>1.64</td>
<td>.36</td>
</tr>
<tr>
<td>5%</td>
<td>6.47</td>
<td>28.89</td>
<td>50.18</td>
<td>18.34</td>
<td>3.5</td>
<td>.56</td>
<td>1.63</td>
<td>.35</td>
</tr>
<tr>
<td>10%</td>
<td>4.27</td>
<td>26.45</td>
<td>46.78</td>
<td>17.65</td>
<td>3.45</td>
<td>.55</td>
<td>1.61</td>
<td>.34</td>
</tr>
<tr>
<td>20%</td>
<td>2.54</td>
<td>22.63</td>
<td>41.21</td>
<td>16.41</td>
<td>3.34</td>
<td>.54</td>
<td>1.59</td>
<td>.32</td>
</tr>
<tr>
<td>30%</td>
<td>1.81</td>
<td>19.77</td>
<td>36.82</td>
<td>15.33</td>
<td>3.24</td>
<td>.53</td>
<td>1.56</td>
<td>.3</td>
</tr>
<tr>
<td>40%</td>
<td>1.41</td>
<td>17.56</td>
<td>33.28</td>
<td>14.38</td>
<td>3.14</td>
<td>.52</td>
<td>1.54</td>
<td>.29</td>
</tr>
</tbody>
</table>

a Partitioning coefficients are from Bacon and Druitt (1988), except as noted.
b Partitioning coefficients for albite and orthoclase are assumed to be same and are from Nash and Crecraft (1985).
d The Neoproterozoic mafic plutons are assumed to be a protolith of the Tianpinghe granites. Initial trace-element concentrations reflect the average composition of the rocks from the Neoproterozoic mafic plutons exposed in the Hannan region [Zhou et al. 2002a; Zhao and Zhou 2008b].
e Batch partial melting model is calculated by $C_L/C_O = 1/(D_O + F(1 - D_O))$, where C_L is the weight concentration of a trace element in the liquid, C_O is the weight concentration of a trace element in the original unmelted solid, D_O is the bulk distribution coefficient of the original solids, and F is the fraction of melt already removed from the source. The source model is 39.2% anorthite, 26.6% albite, 2.6% orthoclase, 12.2% clinopyroxene, 9.3% orthopyroxene, 6.7% olivine, 0.4% apatite, 1.7% ilmenite, and 1.3% magnetite, the CIPW mineral proportions of the average bulk compositions of the mafic rocks [Zhou et al. 2002a; Zhao and Zhou 2008b].
pluton was generated at a time when the lithospheric mantle was hot, suggesting that intraplating and underplating of mantle-derived magmas were the main heat sources for generating the Tianpinghe pluton.

The 735-Ma adakitic plutons in the Hannan region are explained by melting of a thickened lower mafic crust (Zhao and Zhou 2008a). This mechanism requires that the crust be more than 50 km thick, the minimum depth for producing adakitic melts in the eclogitized lower crust (e.g., Rapp et al. 1991; Kay and Kay 2002). No older adakitic plutons have been found in the region, suggesting that the thickness of the continental crust gradually increased to more than 50 km at around 735 Ma by underplating of the mantle-derived magma (Zhao and Zhou 2008a). The rocks from the 762-Ma Tianpinghe pluton all plot within the volcanic-arc granite field in the Nb versus Y and Rb versus Y + Nb diagrams (fig. 12, VAG), indicating that they were formed in a collisional environment. The Tianpinghe pluton was therefore the product of continental crustal differentiation that resulted from crustal thickening at an active continental margin during the Neoproterozoic (fig. 13).

According to the arc signatures of the Xixiang volcanic rocks in the Hannan region, subduction of oceanic lithosphere beneath the western margin of the Yangtze Block started no later than 950 Ma (Ling et al. 2003). The mafic-ultramafic intrusions in the Hannan region have SHRIMP zircon U-Pb ages ranging from 820 to 746 Ma and show arclike geochemical compositions, suggesting that they were produced by partial melting of a mantle wedge above a subduction zone [Zhou et al. 2002a]. In addition to the Tianpinghe granites, I-type calc-alkaline Neoproterozoic granites are widely distributed in the western margin of the Yangtze Block (Ling et al. 2001; Zhou et al. 2002b; Chen et al. 2005). Subduction is therefore a reasonable explanation for the long span of arc magmatic activities. The active continental margin persisted for more than 200 m.yr. along this margin, an environment similar to the eastern margin of the Eurasian continent above the subduction zone of the Izanagi/Pacific oceanic plate since the Triassic (Maruyama et al. 1997).

Figure 11. Primitive-mantle-normalized patterns for selected modeled trace elements. The gray area represents the field of the rocks from the Tianpinghe pluton. The numbers represent percentages of partial melting. Normalizing values are from Sun and McDonough (1989).

Figure 12. Nb versus Y [top] and Rb versus Y + Nb [bottom] discrimination diagrams for the Tianpinghe granites, showing the tectonic classification suggested by Pearce et al. [1984]. Syn-COLG = syn-collisional granite; VAG = volcanic-arc granite; WPG = within-plate granite; ORG = ocean ridge granite.
The presence of a long-lived magmatic arc, the so-called Panxi-Hannan arc (Zhou et al. 2002b), at the western margin of the Yangtze Block rules out the Rodinian-reconstruction model proposed by Li et al. (2003), in which South China was located in the center of the supercontinent. Instead, the Panxi-Hannan arc may have been part of the Neoproterozoic Andean-type arc that has been defined by volcanic and plutonic rocks in Madagascar, Seychelles, and northwestern India (Tucker et al. 2001). Therefore, South China was most probably located along the margin of the Neoproterozoic supercontinent (Zhou et al. 2006a). The Neoproterozoic granites at the western margin of the Yangtze Block are part of the Andean-type arc assemblage at the northwestern margin of Rodinia.

Conclusions

The rocks from the 762-Ma Tianpinghe pluton are I-type granites that were generated by partial melting of newly formed basaltic rocks in the lower crust. This mafic lower crust formed by intraplating of mantle-derived magma during crustal thickening. The Neoproterozoic was an important period of continental growth and reworking in the Yangtze Block.

Figure 13. Sketch cross section showing the formation process of the Tianpinghe pluton in the northwestern margin of the Yangtze Block. (a) Starting at least at 950 Ma, melting of a mantle wedge above a subduction zone resulted in the formation of gabbroic intrusions and magma underplating. (b) Intraplating melts of the newly formed basaltic rocks at less than 50 km produced the Tianpinghe granites. This two-stage model suggests that the Neoproterozoic was an important stage of continental crustal growth and differentiation in the northwestern margin of the Yangtze Block.
Block. The northwestern margin of the Yangtze Block was an active continental arc for a period of 200 m.yr., similar to the present-day eastern margin of the Eurasian continent. Reworking of the newly formed continental crust may have been the main mechanism of crustal differentiation in the Yangtze Block. The long-lasting Neoproterozoic arc at the western margin of the Yangtze Block suggests that it was a continuation of the Andean-type arc at the northwestern margin of the Rodinia.

ACKNOWLEDGMENTS

This work was substantially supported by grants from the National Natural Science Foundation of China (40873027), the Chinese Academy of Science (2005), and a Chinese 973 project matching fund from the University of Hong Kong. We are grateful to Allen Kennedy for SHRIMP dating, Xiao Fu for x-ray fluorescence analyses, Gao Jian-Feng for ICP-MS analyses, and Liu He and Zhao Xin-Fu for zircon Lu-Hf analyses. Cheng Wei is also thanked for his assistance in the field.

REFERENCES CITED

