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[1] The Chaobai River basin in northern China consists of two major tributaries, the Chao
River and Bai River. Monthly observations of precipitation, streamflow, and
panevaporation data are available for 35 years (1961–1966 and 1973–2001). Using the
annual time series of the observed streamflow, one break point at 1979 is detected and
is adopted to divide the data set into two study periods, the ‘‘before’’ and ‘‘after’’ periods
marking the onset of significant anthropogenic alteration of the flow (reservoirs and
silt retention dams, five times increase in population) and significant changes in land use
(conversion to terraced fields versus sloping fields). The distributed time-variant gain
model (DTVGM) was used to evaluate the water resources of the area. Furthermore, the
Bayesian method used by Engeland et al. (2005) was used in this paper to evaluate two
uncertainty sources (i.e., the model parameter and model structure) and for assessing
the DTVGM’s performance over the Chaobai River basin. Comparing the annual
precipitation means over 13 years (1961–1966 and 1973–1979), the means of the second
period (1980–2001) decreased by 5.4% and 4.9% in the Chao River and Bai River basins,
respectively. However, the related annual runoff decreased by 40.3% and 52.8%,
respectively, a much greater decline than exhibited by precipitation. Through the monthly
model simulation and the fixing-changing method, it is determined that decreases in runoff
between the two periods can be attributed to 35% (31%) from climate variations and
68% (70%) from human activities in the Chao River (Bai River). Thus, human impact
exerts a dominant influence upon runoff decline in the Chaobai River basin compared
to climate. This study enhances our understanding of the relative roles of climate
variations and human activities on runoff.
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1. Introduction

[2] Climatic variables, especially rainfall, largely deter-
mine the runoff hydrograph of a basin; further, the features of
a basin, for example land use/covers, are related to runoff
generation. Climate variations may result in changes of the
elements of climate, such as precipitation, and human activ-
ities can influence drainage basin features [Beven, 2001;
Kezer and Matsuyama, 2006]. Therefore, it is imperative to
understand the influence and relative importance of climate
variations and human activities on runoff, which is critical
to the management of regional water resources. However,

quantitative evaluation of the effects of climate variations and
human activities on runoff in rivers is still limited. Usually,
hydrologic models [Xu and Vandewiele, 1995; Yates, 1996;
Liu et al., 2004; Chen et al., 2007] have been used to in-
vestigate the impacts of natural and human factors on the
water cycle. In this study, a monthly water balance model is
used to investigate the impacts and relative importance of
climate variations and human activities on discharge in the
Chaobai River in northern China.
[3] In this study, climate variations refer to the changes

in precipitation and panevaporation, while the soil and water
conservation works (e.g., constructions of reservoir dams
and silt retention dams), the regional water demand increases
and the land cover changes over the Chaobai River are the
mechanisms bywhich human activities may influence runoff.
Presently, techniques for representing the effects of human
activities on hydrologic responses are limited. For example,
the SCS (Soil Conservation Service) curve number method,
developed by the SCS of the USDA (United States Depart-
ment of Agriculture) [Thompson, 1999; Beven, 2001], has
been widely used for runoff simulations, and can be used for
studying the effect of human activities on runoff. The MIKE
SHE model, which is also widely used, describes the effects
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of land use/cover change (LUCC) on the hydrologic process
[Andersen et al., 2002]. In a case study on the Qinhuaihe
River basin in China, Wang and Lu [2003] established the
corresponding runoff patterns individually for four different
land use types, and analyzed the influences of LUCC on the
water resource system.
[4] To simulate runoff rationally, it is crucial to model

actual evapotranspiration accurately. Analyzing the hydro-
meteorological data from 250 basins over the world, Zhang
et al. [2001] found that a relationship between long-term
evapotranspiration and precipitation at the catchment scale
existed. In the Bagrov model [Terpstra and van Mazijk,
2001], the actual evapotranspiration is calculated from the
most important controlling/influencing parameters of pre-
cipitation and potential evapotranspiration. Moreover, the
Bagrov model employs the effectiveness parameter to
reflect the storage properties of the evaporative zone and
to indicate the land use and soil type. The monthly water
balance model used in this study adopts the Bagrov model
for computing the actual evapotranspiration.
[5] Because of concern about water resource sustainability

over northern China, numerous studies [e.g., Liao and Li,
2003; Hao, 2004; Xia et al., 2005] have been undertaken to
explore the security of water resources in the region. Specif-
ically, for studying the water resource situation of the
Chaobai River basin in northern China, Wang et al. [2002]
developed the distributed time-variant gain model (DTVGM)
to investigate the effect of LUCC on runoff [Wang et al.,
2004; Wang, 2005]. Using the DTVGM, this study has its
objective of quantifying the relative influences of climate
variations and human activities upon runoff for the Chaobai
River basin. In addition, this study performs an uncertainty
analysis of the model si on. Usually, the Bayesian

method is used to evaluate uncertainties of hydrologic model
simulation [e.g., Engeland et al., 2005; Yang et al., 2007;
Huard and Mailhot, 2008]. With the Bayesian method used
by Engeland et al. [2005], two uncertainty sources (i.e., the
model parameter and model structure) are studied for assess-
ing the DTVGM’s performance over the Chaobai River
basin. The results are used to separate the competing influ-
ences of climate variations and human activities.
[6] The paper is organized as follows. Section 2 intro-

duces the study area, human activities and data. Sections 3
and 4 describe the model and model parameter optimization
and the uncertainty analyses of the model simulation. The
results and discussions are presented in section 5.

2. Study Area, Human Activities, and Research
Data

2.1. Study Area

[7] The study area is the Chaobai River basin with an
area of 13846 km2 (Figure 1), which is a subbasin of the Hai
River basin in northern China. In the basin, currently, forest,
grassland, and cultivated land account for 98% of the total
area. The river consists of two tributaries, the Chao River
and the Bai River, and their confluence is at the Miyun
Reservoir, which is the main source of water supply for
Beijing City [Wang and Xia, 2003]. The Chaobai River
basin is delineated into 136 subbasins, with 53 in the Chao
River basin and 83 subbasins in the Bai River basin.

2.2. Human Activities

[8] In this study, human activities reflect both direct and
indirect influences on runoff. Direct human activities refer
to the soil and water conservation works, water demand

Figure 1. Location of the Chaobai River basin, consisting of the Chao River basin and the Bai River
basin, above the Miyun Reservoir in northern China. The locations of the Lingying Reservoir and
Longtanmiao Reservoir in the Chao River and the Yunzhou Reservoir and Baihebao Reservoir in the Bai
River are marked.
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increases, and indirect influences include land cover and
land use changes over the Chaobai River basin.
[9] Since the late 1970s, China has experienced rapid

socioeconomic development, and the regional water con-
sumption and land cover have changed dramatically. Accord-
ing to the land cover maps from the Chinese Academy of
Sciences, the coverage of forest increased from 48% in 1980
to 65% in 1995, while grassland and cultivated land de-
creased from 28% and 22% to 16% and 17%, respectively.
More, it is observed that the population over the Chaobai
River basin in 1995 was five times that of 1950 (160,000 in
1950, and 870,000 in 1995) [Liao and Li, 2003; Hao, 2004].
The daily water consumption per capita has been increasing
from less than 0.03 m3 in 1959, to more than 0.10 m3 in 1995,
and to more than 0.20 m3 in 2000 [Gao et al., 2002; Chaobai
River Management Bureau of Beijing (CRMBB), 2004], and
has resulted in a dramatic increase of water.
[10] Over the study area, the regional geography has been

changed considerably since 1980 with the sloping fields
transformed into terraced fields, and the construction of silt
retention dams and some reservoirs (i.e., the soil and water
conservation works) in the 1970s and 1980s [CRMBB, 2004].
For example, in the Chao River, the Longtanmiao Reservoir
with 2.86 million m3 of storage was built in 1972, and the
Lingying Reservoir with 1.44 million m3 built in 1976. In the
Bai River, the Yunzhou Reservoir with 113.7 million m3 was
built in 1970, and the Baihebao Reservoir with 90.6 million
m3 built in 1983 (see Figure 1 for the locations of these
reservoirs) [China Water Yearbook, 1991]. These reservoirs
in the basin are used to store water for agricultural and do-
mestic water demands, which result in not only an enhanced
water withdrawing capacity of the local population, but also an
increase in total evaporation and leakage from the reservoirs.
[11] Furthermore, silt retention dams constructed in the early

1980s over the Chaobai River basin [CRMBB, 2004] have
greatly influenced the runoff process. For example, there are
two similar small subwatersheds, each with an area of 0.2 km2,
in theChaobaiRiver basin, onewith 23 silt retention dams built
around 1980 and the other in a natural condition with no silt
retention dams. It was observed that after a rainfall event with
22.4 mm lasting half an hour in July of 2003 no runoff was
generated in the first subwatershed but in the second the runoff
depth reached 18.5 mm. Therefore, it can be inferred that
human activities in the form of silt retention dam construction
have the capacity to affect runoff in the Chaobai River.

2.3. Data and Analysis Method

[12] Several data sets were utilized, including a 39-year
record of annual precipitation and runoff data (from 1961 to
1966 and 1969 to 2001) and a 35-year record of monthly
data including precipitation, runoff and panevaporation
(from 1961 to 1966 and 1973 to 2001). In order to detect
the changing trends, the Ordered Clustering (OC) analysis
method [Xie et al., 2005] is applied in the study. Given a
time series X = {x1, x2, . . ., xn}, the OC method assumes the
possible break point is t, and then Vt and Vn�t are
calculated as below:

Vt ¼
Pt
t¼1

xt � xtð Þ2

Vn�t ¼
Pn

t¼tþ1

xt � xn�tð Þ2

8>><
>>: ð1Þ

where xt and xn�t are the average values of the two subseries
separated at t. Thus the total sum of the two is given by:

Sn tð Þ ¼ Vt þ Vn�t ð2Þ

The valid break point t0 will satisfy the objective function
below:

Sn t0ð Þ ¼ min
2�t�n�1

Sn tð Þf g ð3Þ

3. Monthly Water Balance Model and Human
Activities Parameter Set

3.1. Components of Water Balance Model

[13] The distributed monthly water balance model, the
DTVGM [Wang et al., 2004], is used over the Chaobai
River basin. The water balance in the DTVGM is expressed
as below:

DAWt ¼ AWtþ1 � AWt ¼ Pt � ETat � RSt � RSSt �WUt; ð4Þ

where DAW is the change of soil moisture storage, AW, in
mm. The subscript t and t + 1 represent variables at time step t
and t + 1, respectively. P is the precipitation, and ETa is the
actual evapotranspiration, both in mm. RS and RSS are the
surface runoff and subsurface runoff, respectively. WU is
the net water consumption, including water use, depression
storage, ineffective evapotranspiration (mainly referring to
evaporation of irrigation water) and seepage loss. Because of
the difficulty of evaluating the value of WU, this study
includesWU in the computation of ETa, RS and RSS through
adjusting the parameter values related to human activities
(see section 3.5 for details).

3.2. Revised Bagrov Evapotranspiration Model

[14] The Bagrov model [Terpstra and van Mazijk, 2001]
can be applied at the monthly or annual temporal scale, using
precipitation to compute evapotranspiration:

dETa

dP
¼ 1� ETa

ETp

� �N

; ð5Þ

where ETp is the potential evapotranspiration, and N, the
effectiveness coefficient, is an exponential index and is
determined by soil and land cover types. Other variables are
the same as those used in equation (4). With a boundary
condition [Terpstra and van Mazijk, 2001], equation (5) can
be transformed:

d
ETa

ETp

� �
¼ 1� ETa

ETp

� �N
 !

	 d P

ETp

� �
;

ETa=ETp ¼ 0; while P=ETp ¼ 0: ð6Þ

In order to estimate the change in evapotranspiration more
rationally, in this study, the Bagrov model is revised. In the
Bagrov equation, only precipitation is used. However, many
studies have indicated that the actual evapotranspiration is
considerably influenced by the antecedent soil moisture
content [e.g., Thompson, 1999; Davie, 2002]. Additionally,
the boundary condition in equation (6) is not reasonable at the
monthly scale, because ETa could not be zero even if there is
no precipitation. Therefore, in this study, the soil moisture
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content AW is also included in the computation of actual
evapotranspiration and the revised Bagrov model is as
follows:

d
ETa

ETp

� �
¼ 1� ETa

ETp

� �N
 !

	 d PAW

ETp

� �
;

ETa=ETp ¼ 0; while PAW=ETp ¼ 0; ð7Þ

where PAW = KAW 
 (AW + P). KAW is a coefficient and is
determined by model calibration with observed rainfall-
runoff data.
[15] Since there is no analytical solution for equation (7),

the equation is solved numerically, and the relationship be-
tween ETa/ETp and PAW/ETp with different Ns is given in
Figure 2. A given value ofN represents a certain combination
of soil and land cover. Generally, according to Jankiewicz et
al. [2001], the value ofN is 3.00 for forest, 1.39 for grasslands
and 1.63 for cultivated land and bare soil surfaces. With a
fixed N value, the ratio of ETa/ETp monotonically increases
along with the increase of PAW/ETp. Figure 2 also shows that
with a fixed PAW/ETp, the higher N the higher ETa/ETp.

3.3. Runoff Simulation

[16] In the DTVGM, the rainfall and antecedent soil
moisture content are used to model runoff. The model can
be used at daily and monthly scales, and the schemes for
computing runoff at the two temporal scales are different. In
this study, the scheme at the monthly scale is introduced.
Analyzing the observations of runoff and soil moisture over
several river basins, Xia et al. [2005] found that the surface
runoff coefficient is time-variant, and is a function of the
antecedent soil moisture content. Therefore, the surface run-
off (RSt) generated in a basin can be described as follows [Xia
et al., 2005]:

RSt ¼ g1 	 AWt=AWCð Þg2 	Pt; ð8Þ

where g1 and g2 are the coefficients, and AWC is the saturated
soil moisture content.
[17] To model subsurface runoff (RSSt), there are several

methods developed on the of the storage-outflow re-

lationship, including those based on linear, quadratic, power
law and exponential relationships [Lee, 2007]. In the
DTVGM, the RSSt is calculated by a linear storage-outflow
relationship [Thompson, 1999; Lee, 2007]:

RSSt ¼ Kr 	 AWt þ AWtþ1ð Þ=2; ð9Þ

whereKr is the subsurface runoff coefficient. The rational for
using the linear relationship to compute subsurface runoff at
the monthly scale will be confirmed in section 5.3 of the
paper. Therefore, the total runoff (Rt) generated during month
t is the sum of surface and subsurface runoff:

Rt ¼ RSt þ RSSt ð10Þ

3.4. Model Parameter Optimization

[18] An objective function, OBF, is used for identifying
the different values of the model parameters for the different
periods over the Chao River and Bai River basins. The OBF
consists of two components: (1) the index of volumetric fit
(IVF), i.e., the ratio of the simulated runoff volume (VOLsim)
to the observed runoff volume (VOLobs), and (2) the Nash-
Sutcliffe efficiency criterion (NSEC) [Arnell and Reynard,
1996]. The equation for computing the OBF is:

OBF ¼ w
 j1:0� IVFj þ 1:0� wð Þ 
 j1:0� NSECj; ð11Þ

IVF ¼ VOLsim=VOLobs; ð12Þ

NSEC ¼ 1�
P

Qobs ið Þ � Qsim ið Þ½ 
2P
Qobs ið Þ � Qobs


 �2 ; ð13Þ

where w is a weighting factor between 0 and 1 (0.5 is used in
this study). Qsim(i) and Qobs(i) are the simulated runoff and
observed runoff in month i. Qobs is the observed monthly
runoff mean over the study period. This objective function
takes account of both volumetric fit and hydrograph fit.
When the OBF is close to zero (i.e., the values of IVF and
NSEC are closer to 1.0), the model performance is better.

Figure 2. The relationship between ETa/ETp and PAW/ETp with different Ns.

4 of 12

W00A11 WANG ET AL.: CLIMATE VARIATIONS AND HUMAN ACTIVITIES W00A11



[19] To optimize the value of theOBF and to determine the
model parameter values at the different periods, the SCE-UA
(Shuffled Complex Evolution developed at the University of
Arizona) global optimization algorithm [Duan et al., 1992,
1994] is used. The SCE-UA is an integration of four concepts
[Duan et al., 1992]: (1) combination of deterministic and
probabilistic approaches, (2) systematic evolution of a ‘‘com-
plex’’ of points spanning the parameter space in the direction
of global improvement, (3) competitive evolution, and (4)
complex shuffling.
[20] Generally, one optimal parameter set can be obtained

using such optimization technologies such as the SCE-UA.
However, various parameter sets may result in the same ob-
jective function value because of the possible existence of the
effect of ‘‘equifinality’’ [Beven and Freer, 2001; Beven,
2001]. To reduce the effect of ‘‘equifinality’’ and to evaluate
the model uncertainty influence, it is essential to conduct a
model uncertainty analysis using the methods described in
the following section.

3.5. Human Activities Parameter Set

[21] Runoff is simulated by the DTVGM [Wang et al.,
2004; Xia et al., 2005], and a Human Activities Parameter
Set (HAPS) (see Table 1) is used to represent the impacts of
human activities on runoff in the model. Intuitively, the
impacts of human activities on the terrestrial hydrologic
processes can be observed through monitoring various
aspects of runoff, evapotranspiration and soil moisture move-
ments. Therefore, some parameters in the DTVGM will be
influenced when such impacts are considered in the model,
and these are given in Table 1.
[22] In Table 1, the parameter, g1 used in equation (8), is

related to surface runoff, and its value is adjusted during
modeling of the influences of human activities (see
section 5.4 for the details of why to and how to adjust
the parameter’s value). The other two parameters, Kr in
equation (9) and KAW in equation (7), represent the
influences of human activities through manipulating the
soil moisture and evapotranspiration simulation in the
model. Usually, the direct effect of human activities is
leading the LUCC, and in the DTVGM, parameter N in
equation (7) can be used to represent the effects of different
land covers on evapotranspiration. However, in the study,
the value of N is fixed according to the suggestions of
Jankiewicz et al. [2001], and parameter KAW is used to
represent the influence of the LUCC, since the scale of the
LUCC would not change the dominant land cover types,
which is used to assign a certain value to N, over a region.
[23] Table 1 also lists the lower and upper bounds of the

HAPS parameters obtained from both water balance analysis
and the model trials. A recent water resources assessment in
China gives the mean ratio of surface runoff to precipitation
(RS/P) as 0.16 for North China [Ministry of Water Resources,
2007], so the bounds (0.02–0.4) for g1 in equation (8) should

satisfy this requirement over the Chaobai River basin.KAW is
a coefficient to represent the response of evapotranspiration
to the ratio (AW + P)/ETp, and it should range from 0 to 1.0.
In this study, the range from 0.1 to 1.0 is used since the model
trials indicate that KAW should not be less than 0.1. The
model trials also help to determine that Kr has a wide range
from 0.005 to 0.100.

4. Model Uncertainty Analysis

[24] To evaluate the effects of climate variations and
human activities on hydrologic processes through using the
monthly DTVGM model, it is necessary to analyze the un-
certainty effects due to the model parameters and the model
structure on the model performance. In this paper, such
uncertainty analyses over the benchmark period (13 years,
156 months) are conducted using Bayesian inference to
analyze the uncertainties of hydrological models [Engeland
et al., 2005; Yang et al., 2007]. A brief summary is given
below for the purpose of completeness.
[25] Bayes’s theorem [Congdon, 2001] is applied in this

study to explore parameter uncertainty. Using observations q,
the posterior distribution p(g, qjq) of model parameters q, a
vector representing the model parameters, and some statisti-
cal parameters g, a vector describing the simulation errors,
can be generated by the prior distribution, f(g, q), and the
likelihood function of the model, f(qjg, q) [Engeland et al.,
2005; Yang et al., 2007]:

p g; qjqð Þ ¼ f qjg; qð Þ 	 f g; qð ÞR
f qjg; qð Þ 	 f g; qð Þ 	 dg 	 dq

ð14Þ

where q is a transformation, e.g., q =
ffiffiffiffi
Q

p
, of the observed

model output Q (e.g., runoff) with homoscedastic simulation
errors [Engeland et al., 2005].
[26] According to Engeland et al. [2005], it can be

assumed that f(g, q) obeys a uniform distribution and f(qt
j g, q) follows a normal distribution truncated at zero, thus
the likelihood function at time t, Lt(g, q j qt) can be written
as below:

Lt g; qjqtð Þ ¼ f qtjg; qð ÞR
qt�0

f qtjg; qð Þ 	 dg 	 dq ¼
1ffiffiffiffiffiffiffi
2pwt

p exp � qt�qt qð Þð Þ2
2wt

h i
1:0� F �qt qð Þffiffiffiffi

wt
p

h i
ð15Þ

where qt(q) =
ffiffiffiffiffiffiffiffiffiffiffi
Qt qð Þ

p
and Qt(q) is the simulated runoff

depending on the parameter vector q, wt the variance of the
simulation error, and F the standard cumulative normal dis-
tribution [Engeland et al., 2005].
[27] While all the simulation errors are assumed to be

independent, the likelihood of the model can be expressed

Table 1. Parameter Set Representing Impacts of Human Activities in the Model (HAPS)

Parameter Note Lower Bound Upper Bound

g1 coefficient of time-variant gain factor, related to surface runoff generation 0.02 0.40
Kr storage-outflow coefficient related to subsurface runoff generation (1/month) 0.005 0.100
KAW coefficient for calculating actual evapotranspiration 0.1 1.0
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as the product of the likelihood at each time step [Engeland
et al., 2005]:

L w; qjqð Þ ¼
Yn
t¼1

Lt g; qjqtð Þ

¼
Yn
t¼1

(
1:0� F � qt qð Þffiffiffiffiffi

wt
p

� �� ��1

	 1ffiffiffiffiffiffiffiffiffiffi
2pwt

p exp � qt � qt qð Þð Þ2

2wt

" #)
ð16Þ

To estimate parameters, the Metropolis Hastings (MH)
algorithm, a typical Markov Chain Monte Carlo (MCMC)
sampling method [Engeland et al., 2005; Owen and Tribble,
2005], is used. The 95% confidence intervals for streamflow
due to parameter uncertainty are computed from the stream-
flow samples with 10000 parameter sets generated by theMH
algorithm. According to Engeland et al. [2005], the 95%
confidence intervals for both the parameter uncertainty and
the model structure uncertainty are calculated by adding the
model residuals to each of the 10000 streamflow values
at each time step, where the residuals are in the form of a
random uncertainty with a mean of zero and a standard
deviation of wt.

5. Results and Discussions

5.1. A Break Point in the Runoff Series

[28] Figures 3 and 4 show the cumulative annual precip-
itation and runoff over the Chao River and Bai River basins,
respectively. Figure 3 shows that the cumulative annual
precipitation curves are nearly straight lines, which may infer
that there is no abrupt change in the annual precipitation.
[29] Using the OC method (see section 2.3), one break

point at 1979 is detected in the runoff record. The signifi-
cance of this break point is tested using the software of Proc
GLM [SAS Institute Inc., 2004], and indicates that the time
series of runoff before and after the break point at 1979 are
significantly different [SAS Institute Inc., 2004; Mendenhall
and Sincich, 2007]. Accordingly, the study period is divided
into two periods, 1961–19 cluding the period of 1967

to 1972 because of a shortage of monthly data), and 1980–
2001 (see Table 2). The mean annual precipitation in the
Chao River basin is 511 mm/a and 483 mm/a for the two
periods, respectively, and in the Bai River basin it is 471 mm/
a and 448 mm/a, respectively, for the corresponding periods.
[30] As per the information of human activities given in

section 2.2, it is believed that the break point at 1979 should
reflect the changes in the effects of human activities on the
water cycle over the basin. For that reason, it would be
rational that this study takes the first period (from 1961 to
1966 and 1973 to 1979) as the benchmark period for studying
the effects of climate variations and that the effects of human
activities on runoff predominated in the second period (from
1980 to 2001).
[31] For investigating the effects of the climate variations

on runoff, the corresponding scenario of climate variations
(SC) of each period is defined. For example, the SC of
DataCPII (see Table 2) refers to the observed precipitation
and panevaporation and represents the climate in the Chao
River basin at period II. Then, using the SC of DataCPII to
replace the SC of DataCPI (the climate conditions during the
benchmark period, period I), the effects of climate variations
at period II on runoff can be evaluated. Similarly, for ex-
ample, the HAPS of ParaBPII (Table 2) characterizes the
influence of human activities at period II in the Bai River
basin, and then the benchmark period of the HAPS may
be replaced to explore the influence of human activities at
period II. The details of using the SC and HAPS at the
different periods for studying the effects of climate varia-
tions and human activities on runoff will be presented in
section 5.4.

5.2. Uncertainties in Model Parameters and Model
Structure

[32] The three HAPS parameters (g1, Kr, and KAW) for
studying the model parameter uncertainty and the variance of
simulation errors (VAR) for the model structure uncertainty
are involved in the uncertainty estimation. Using the MH
method, the 95% confidence intervals of the HAPS param-
eters in period I and their correlations are computed and these
are given in Table 3. Compared with the HAPS parameter
ranges in Table 1, all their 95% confidence intervals in Table 3

Figure 3. Cumulative annual precipitation from 1961 to 2001 (excluding 1967 and 1968) for the Chao
River basin and the Bai River basin.
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not only fall within their ranges, but also shrink into much
narrower bands. This feature of the 95% intervals reduces the
possibility of ‘‘equifinality.’’
[33] In Table 3, it can be observed that the surface

runoff parameter, g1, is negatively related to the subsurface
runoff parameter, Kr, whereas Kr is positively related to
the evapotranspiration parameter, KAW. However, no corre-

lation is found between g1 and KAW. These correlations
not only corroborate the physical interpretations about the
HAPS parameters, but also establish quantitative parameter
relationships.
[34] The 95% confidence intervals of the simulated

streamflow in period I due to the parameter uncertainty and
the model structure uncertainty over the Chao River and the

Figure 4. The same as in Figure 3 but for cumulative annual runoff for (a) the Chao River basin and
(b) the Bai River Basin.

Table 2. Runoff Simulation Periods and HAPS Referring to the Human Activities-Related Parameter Seta

Period
Number of

Years

Precipitation
(mm/a)

Potential
Evapotranspiration

(mm/a)
Scenario of Climate
Variations (SC) HAPSChao River Bai River Chao River Bai River

I: 1961–1966, 1973–1979 13 511 483 1133 1133 DataCPI,b DataBPI ParaCPI, ParaBPI
II: 1980–2001 22 471 448 1096 1264 DataCPII, DataBPIIc ParaCPII, ParaBPII

aSee Table 1.
bC and PI in DataCPI denote the Chao River basin and period I, respectively.
cB and PII in DataBPII den Bai River basin and period II, respectively.
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Bai River are shown in Figures 5 and 6, respectively. From
Figures 5a and 6a, it can be found that the influence from the
model parameter uncertainty on streamflow simulation is
minimal, which further confirms that the possibility of
‘‘equifinality’’ for using the DTVGM would be small.
Moreover, the confidence intervals become much wider
(Figures 5b and 6b) when the model structure uncertainty is
included, which indicates that the uncertainty in streamflow
simulation due to the model parameters is less important than
that due to the model structure. However, Figures 5b and 6b
show that for both basins more than 90% of the observed

values are inside the 95% confidence intervals of the simu-
lated streamflow, which indicates that the DTVGM can give
robust estimates of the monthly water balance, the long-term
average water balance and confidence intervals. The finding
from this uncertainty analysis is consistent with that from
Engeland et al. [2005].

5.3. Monthly Rainfall-Runoff Simulations

[35] Table 4 shows the results of the optimized parameter
values at the two study periods for the DTVGM over the
Chao River and the Bai River using both the OBF and the

Table 3. The 95% Confidence Intervals of, and Correlations Between, the HAPS Parameters Estimated by the MH Methods for the Chao

River and the Bai River During Period Ia

Chao River Bai River

g1 Kr KAW 95% Confidence Interval g1 Kr KAW 95% Confidence Interval

g1 1.00 �0.37 0.08 0.046–0.105 1.00 �0.49 0.06 0.032–0.077
Kr �0.37 1.00 0.64 0.044–0.085 �0.49 1.00 0.46 0.051–0.083
KAW 0.08 0.64 1.00 0.440–0.575 0.06 0.46 1.00 0.355–0.451

aMH, Metropolis Hastings.

Figure 5. The 95% confidence intervals for simulated streamflow due to (a) the parameter uncertainty
and (b) the sum meter and model structure uncertainties in the Chao River basin.
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SCE-UA methods. With the optimized OBF, Table 4 also
gives the results of IVF and NSEC. From Table 4, it can be
observed that HAPS parameter values vary for different time
periods. The storage-outflow coefficient Kr in period I (see
equation (9)), which is related to subsurface runoff genera-
tion is smaller than in period II. Meanwhile, the coefficient
KAW for calculating actual evapotranspiration in equation (7)
related to land surface characteristics is larger in period I than
in period II over the Chaobai River basin.
[36] As the influence of human activities over the Chaobai

River basin was significantly less in the 1960s and 1970s (see
section 2.2) [CRMBB, 2004; Hao, 2004], the rainfall-runoff
relationship in period I is selected for studying the effects of

human activities occurring at period II. The time-variant gain
factor, G = f(g1, g2) = g1 (AW/AWC)g2, which is the factor for
determining the surface runoff generation (see equation (8))
is given in Figure 7. The changes in G are caused by the
changes in g1, and the impact of human activities on surface
runoff between two periods can be expressed as:

DG ¼ f g01; g2
� �

� f g1; g2ð Þ
¼ g01 � g1
� �

	 AW=AWCð Þg2¼ Dg1 	 AW=AWCð Þg2 ; ð17Þ

where g1, g01 are parameter values at the two periods,
respectively;Dg1 is the difference between them. The values
of Dg1 for the Chao River basin and the Bai River basin are
�0.010 and �0.033, respectively, which implies that the
decreasing trend of surface runoff in the Bai River is larger
than that in the Chao River (Figure 7). The changes in the
gain factor G and the storage-outflow coefficient Kr given in
Table 4 indicate the changes in runoff.
[37] In order to validate the monthly runoff results, the

runoff simulations from the DTVGM at a daily scale are
investigated, and the base flow component is separated from
the streamflow processes to check the proportions of the var-
ious runoff components. In the Chao River basin, the mean

Figure 6. The same as Figure 5 but for the Bai River basin.

Table 4. Optimized Parameter Values at Different Periods

for the Chao River and Bai River

HAPS IVF NSEC g1 Kr (1/month) KAW

ParaCPI 1.00 0.82 0.080 0.080 0.52
ParaCPII 1.00 0.78 0.070 0.050 0.60
ParaBPI 1.00 0.74 0.070 0.072 0.45
ParaBPII 1.00 0.68 0.037 0.041 0.52
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subsurface runoff depth simulated at the monthly scale model
is 47.6% of the total runoff during period I, and 43.0% for
period II, which are close to the percentage of the subsurface
runoff component, 40.1%, at the daily scale model. In the Bai
River basin, the ratios of the subsurface runoff to the total
runoff in the monthly model are 60.6% and 54.1% for periods
I and II, respectively, while this ratio for the daily model is
about 53.1%. These ratios of simulated subsurface runoff
are in accordance with the results from base flow separation
[Arnold and Allen, 1999] using daily streamflow data, where
the base flow contributed around 45% and 54% to the total
runoff in the Chao River and Bai River, respectively. The
subsurface runoff at the monthly scale with a linear storage-
outflow relation (see equation (9)) is close to that at the daily
scale, which indicates that such a linear description for the
subsurface runoff at the monthly scale is valid.

5.4. Impacts of Climate Variations and Human
Activities on Runoff

[38] To evaluate the relative contributions of climate var-
iations and human activities to the changes in runoff, the
fixing-changing method [Zhang, 2004] is adopted to run the
DTVGM. The fixing-cha factor technique involves

fixing one factor and changing another factor to assess the
effects of the changed factor on model performance. In this
study, the influences of climate variations and human ac-
tivities are investigated. Table 5 gives the contribution rates
(CR) of the two factors to the changes of runoff over the
Chao River and Bai River.
[39] The CR is computed on the basis of the differences of

runoff simulation using SC and HAPS at different periods.
For example, for assessing the effects of human activities at
period II at the Chao River basin, the runoff simulations using
three pairs of SC and HAPS, (pair one: DataCPI and ParaCPI
in period I, pair two: DataCPII and ParaCPII in period II, and
pair three: DataCPI and ParaCPII) are processed. Then, in the
ChaoRiver, theCR of the effects of human activities at period II
is computed as follows:

CR human activities; Period IIð Þ

¼ R DataCPI; ParaCPIIð Þ � R DataCPI; ParaCPIð Þ
R DataCPII; ParaCPIIð Þ � R DataCPI; ParaCPIð Þ 
 100% ð18Þ

[40] Table 5 shows that when the SC is DataCPI and the
HAPS is ParaCPII, the simulated runoff is 56.80 mm/a.

Figure 7. Relationships between the gain factor (G) and AW/AWC for different periods for (a) the Chao
River basin and (b) the Bai River Basin.
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Using equation (18), the CR is 68.6%, and it would be
interpreted that the contribution of human activities to the
runoff decrease at period II is 68.6%. Similarly, for evalu-
ating the influence of climate variations, the runoff simula-
tion using the pair of ParaCPI and DataCPII is processed,
and the simulated runoff is 67.43 mm/a (see Table 5). Using
equation (18), the CR is 35.1%, and consequently the con-
tribution of climate variations at period II to runoff change
is 35.1%.
[41] Table 5 also reveals the total runoff change from

period I to period II is �31.72 mm/a over the Chao River
basin; however, the contributions of human activities and
climate variations to this runoff change are �21.75 mm/a
and �11.12 mm/a, respectively. There is a residual of
1.15(=�31.72 � (�21.75 � 11.12)) mm/a, which is caused
by simultaneous changes of the SC and the HAPS and the
nonlinear features of the model in simulating runoff (see
section 3.3). This explains why the sum of the CRs of climate
variations and human activities to the runoff decrease is not
equal to 100% (68.6% + 35.1% = 103.7%).
[42] Correspondingly, comparisons from Table 5 between

periods I and II in the Bai River basin show that the CRs of
climate variations and human activities to runoff decrease
are 30.7% and 70.4%, respectively. Generally, the influence
of human activities on runoff over the Chaobai River basin
is about twice that of climate variations, and the effect of
human activities on runoff decrease in the Bai River is
slightly greater than that in the Chao River. At the two study
periods (1961–1966 and 1973–1979 against 1980–2001),
the runoff coefficients in the Chao River basin are 0.15 and
0.10, and in the Bai River basin are 0.16 and 0.08, respec-
tively. These changes of runoff coefficients would reflect
the influence of human activities on runoff.

6. Conclusions

[43] A monthly water balance model was used to evaluate
the impacts of climate variations and human activities on the
changes of runoff in the Chaobai River basin in northern
China. In the model, three parameters, g1, Kr, and KAW,
represent the effects of human activities. The responses of
streamflow to the uncertainties in model parameters and
model structure are estimated using the Bayesian method,
and it is found that the uncertainty in streamflow simulation
due to themodel parameters is less important than uncertainty
due to the model structure. The uncertainty analysis indicates
that the monthly model can consistently simulate the hydro-

logic processes over the study area. Finally, the relative
contribution of climate variations and human activities to
runoff change are evaluated using the fixing-changing factor
technique.
[44] Using the observed monthly streamflow and rainfall

over a period of 35 years (1961–1966, 1973–2001) from
the Chao River and Bai River to drive the monthly water
balance model, the 35-year period is separated into period I
(1961–1966 and 1973–1979) and period II (1980–2001)
according to a break point in the observational record that is
detected at 1979. Over the Chao River and Bai River basins,
the changes in runoff from period I to period II are much
larger than the changes in rainfall. The difference between
the rainfall and runoff between the two periods indicates the
effects of human activities on runoff. This study revealed
that the contribution of human activities to the decrease in
runoff is 68.6% in the Chao River basin (70.4% in the Bai
River basin). Therefore, it is inferred that human activities
are the main cause of runoff decrease over the Chaobai
River basin in the 1980s and the 1990s.
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