<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>Association between Helicobacter pylori infection and interleukin 1β polymorphism predispose to CpG island methylation in gastric cancer [4]</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td>Chan, AOO; Chu, KM; Huang, C; Lam, KF; Suet, YL; Yun, WS; Ko, S; Xia, HH; Chi, HC; Wai, MH; Shiu, KL; Rashid, A</td>
</tr>
<tr>
<td><strong>Citation</strong></td>
<td>Gut, 2007, v. 56 n. 4, p. 595-597</td>
</tr>
<tr>
<td><strong>Issued Date</strong></td>
<td>2007</td>
</tr>
<tr>
<td><strong>URL</strong></td>
<td><a href="http://hdl.handle.net/10722/57538">http://hdl.handle.net/10722/57538</a></td>
</tr>
<tr>
<td><strong>Rights</strong></td>
<td>Gut. Copyright © B M J Publishing Group.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Association between Helicobacter pylori infection and interleukin 1β polymorphism predispose to CpG island methylation in gastric cancer

Annie On On Chan, Kent-Man Chu, Camy Huang, Kwok Fai Lam, Suet Yi Leung, Yun Wei Sun, Samuel Ko, Harry H Xia, Chi Hin Cho, Wai Mo Hui, Shiu Kum Lam and Asif Rashid

Gut 2007;56:595-597
doi:10.1136/gut.2006.113258

Updated information and services can be found at:
http://gut.bmj.com/cgi/content/full/56/4/595

These include:

References
This article cites 9 articles, 7 of which can be accessed free at:
http://gut.bmj.com/cgi/content/full/56/4/595#BIBL

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to Gut go to:
http://journals.bmj.com/subscriptions/
status and hepatic steatosis found in our study may thus reflect the changes in fat distribution during menopausal transition.

Causal diagrams enable the accurate selection of covariates from a variety of potential variables influencing the studied association. It has been shown that an arbitrary inclusion of variables in multivariable models may not only lead to an underestimation of the association but also introduce bias in the analyses. According to our directed acyclic graphs, metabolic factors should be regarded as mediators rather than confounders for the relationship investigated.

We conclude that menopausal status is associated with hepatic steatosis. The prognostic relevance of this association with respect to incident cardiovascular disease and diabetes has to be proved.

Figure 1. Causal diagram for the association between menopause and hepatic steatosis. (A) A minimum set of confounders would include age, smoking status and unmeasured confounders such as common genetic factors. (B) In contrast with (A), the diagram considers additional causal effects of alcohol consumption and nutritional factors, alcohol consumption and unmeasured confounders such as common genetic factors.

Association between Helicobacter pylori infection and interleukin 1β polymorphism predispose to CpG island methylation in gastric cancer

Interleukin 1β (IL1β) is up-regulated in the presence of Helicobacter pylori infection. IL1β polymorphisms with T/T and T/C genotypes enhance IL1β production, and are associated with an increased risk of H. pylori-induced hypochlorhydria and gastric cancer. The relationship between H. pylori and gastric cancer has been repeatedly reported. It has been reported that IL1β can modulate CpG island methylation through activation of DNA methyltransferase and hence repress gene expression. We therefore hypothesised that patients with H. pylori infection and IL1β polymorphism, by the production of IL1β, are predisposed to gastric cancer development through the CpG island methylation pathway.

We obtained surgical specimens and their corresponding peripheral blood from 98 consecutive patients with gastric cancer admitted to Queen Mary Hospital, Hong Kong. This study was approved by the ethics committee. The methylation status of the death-associated protein-kinase, O′-methyl-guanine methyl-
transf erase, p16 genes and E-cadherin promoter was determined by methylation-specific polymerase chain reaction. Genotyping of IL1β polymorphism was performed as reported previously. H pylori status was determined by serology using a commercially available ELISA kit (pylori DTect ELISA, Diagnostic Technology Pty, New South Wales, Australia) and histology using Giemsa stain. H pylori status was considered to be positive if either H pylori infection was present in 65% (64) of patients. In the IL1β gene, the T and C alleles at the -511 locus of the IL1β gene were in near total linkage disequilibrium with the C and T alleles at the -31 locus. Analysis was therefore restricted to the IL1β-511 locus, but the associations with the -31 locus were identical. The allele frequencies at IL1β-511 were 16% (16), 99% (58) and 25% (24) for C/C, C/T and T/T genotypes, respectively. Methylation of methylguanine-DNA methyltransferase, E-cadherin, death-associated protein and p16 was present in 30% (29), 99% (58), 43% (42) and 45% (44) of patients, respectively (examples shown in fig 1). Patients with the T/T or T/C genotype showed an increased odds ratio (OR) of 6.4 and 3.7, respectively, with respect to the C/C genotype for developing methylation at two or more genes (table 1). This OR for developing methylation at two or more genes was markedly increased in patients with H pylori infection and with the T/T (12.5) or T/C (5.6) genotype with respect to the C/C genotype but was not present in patients without H pylori infection. However, no association of the genotype on an individual methylation marker was seen (table 1). Also, there was no association between the number of genes methylated and H pylori status, no difference in age between those with or without methylation at two or more genes, and anatomical site, except that lower stages (stages I and II) were associated with more frequent methylation at two or more genes (table 1). The underlying mechanisms or the environmental factors governing the simultaneous methylation of multiple genes in gastric cancer are still unclear. H pylori infection stimulates the production of IL1β and the presence of IL1β may result in reversal of methylation at tumour suppressor genes in non-lesional gastric mucosa.1 Our study may further support the idea that H pylori infection stimulates the production of IL1β and the presence of the proinflammatory T allele further enhances the production of IL1β. The synergistic effect of these two factors was observed in our study to correlate with the increased frequency of methylated genes. Thus, patients with H pylori infection and IL1β-511 T/T genotype may be predisposed to gastric cancer through the CpG island methylation pathway.

**Acknowledgements**

This work was supported by the Gastrointestinal Cancer Research Fund, University of Hong Kong.
underlined.

sequences of these gene products. Methylated cytosine residues that are unchanged are shown as methyl-guanine methyl transferase (MGMT) genes. The lower panel shows segments of the methylated Examples of polymerase chain reaction products of P16, DAPK, E-cadherin (ECAD) and O2-.

DAPK MF

MGMT MF

ECAD MF

Figure 1 Examples of polymerase chain reaction products of P16, DAPK, E-cadherin (ECAD) and O2-
methyl-guanine methyl transferase (MGMT) genes. The lower panel shows segments of the methylated sequences of these gene products. Methylated cytosine residues that are unchanged are shown as underlined.

References


Restricted use of albumin for spontaneous bacterial peritonitis

Spontaneous bacterial peritonitis (SBP) may precipitate deterioration of circulatory function with severe hepatic insufficiency, hepatic encephalopathy, and type-1 hepatorenal syndrome (HRS) and has 30% hospital mortality despite infection resolution. Predictors of this acute-on-chronic liver failure include ascitic fluid concentrations of granulocytes and cytokines and renal and hepatic insufficiency at diagnosis. Endotoxemia and the inflammatory response precipitate renal failure (RF) by accentuating splanchic vasodilatation and impairing cardiac function. Compensatory activation of the renin-angiotensin and sympathetic nervous systems further decrease renal perfusion. Volume expansion with albumin (1.5 g/kg day one, 1 g/kg day three) significantly reduces the incidence of HRS and hospital mortality.

In the sole reported trial, only patients with serum bilirubin (bili) >68.4 μmol/l, blood urea nitrogen (BUN) >30 mg/dl or serum creatinine (Cr) >88.4 μmol/l appeared to benefit from albumin. In this report we describe a therapeutic protocol involving 38 episodes in 28 patients at the Mount Sinai Medical Center New York and the Barcelona Hospital Clinic in which albumin (1.5 g/kg on the day of diagnosis, 1 g/kg on the third day; Human Albumin 25%, ZBL Bioplasma AG, Berne, Switzerland) was restricted to those at high risk for RF (bili > 68.4 μmol/l or Cr >88.4 μmol/l) (table 1). Diagnosis and treatment of SBP were based on established guidelines. Cardiovascular and splanchic hemodynamics and the activity of the renin-angiotensin system and inflammatory response were assessed in 6 low-risk cases from Barcelona at SBP diagnosis and resolution.