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Analysis and Synthesis of Nonlinear Systems With
Uncertain Initial Conditions

G. Chesi, Senior Member, IEEE, and
Y. S. Hung, Senior Member, IEEE

Abstract—This technical note considers the problem of computing ex-
tremal values of the trajectories over a given set of initial conditions as well
as finding output controllers minimizing these extremal values under time-
domain constraints for nonlinear systems. It is shown that upper bounds of
the sought extremal values as well as candidates of the sought controllers
can be computed by solving a one-parameter sequence of bilinear matrix in-
equality (BMI) optimizations obtained through the square matricial repre-
sentation (SMR) of polynomials. Moreover, a necessary and sufficient con-
dition is proposed to establish the tightness of the found upper bound in
spite of the conservatism introduced by the nonconvexity of BMI optimiza-
tions and the chosen degree of the Lyapunov function and relaxing polyno-
mials.

Index Terms—Bilinear matrix inequality (BMI), nonlinear system,
square matricial representation (SMR), tightness, uncertain initial condi-
tion.

I. INTRODUCTION

Stability is not the only important issue in the analysis and syn-
thesis of closed-loop systems, in fact, it is often mandatory also to deal
with time-domain constraints on the system signals. For linear sys-
tems, the analysis problem can be solved by exploiting closed-form
solutions for the trajectory, while the synthesis problem with time-do-
main constraints can be addressed via frequency-domain constraints
on weighted transfer functions or via model predictive control (MPC).
For nonlinear systems, the problem is more involved. First, there do not
exist closed-form solutions for the trajectory except few special cases.
Second, the synthesis must deal with the nonlinearities of the state up-
dating law and measurable output, which affect convergence and effi-
ciency of strategies such as nonlinear MPC [1], [2]; and, clearly, the
problem is even more difficult if the initial condition is unknown and
if the nonlinearities are nonpolynomial. In this respect, it should be
noted that approaches such as state augmentation and approximation
techniques for recasting the nonpolynomial system into a polynomial
system can easily yield conservative results.

In this technical note, a new approach to deal with time-domain con-
straints in the analysis and synthesis of nonlinear systems is proposed.
In particular, the proposed framework considers the computation of ex-
tremal values of the trajectories over a given set of initial conditions
and the computation of output controllers minimizing these extremal
values under time-domain constraints. The approach is first described
for systems whose state updating law depends polynomially on the state
and affinely on the input, and then it is extended to deal with nonpoly-
nomial dependence on the state by using truncated Taylor expansions
and taking into account the worst case remainders. It is shown that
upper bounds of the sought extremal values as well as candidates of
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the sought controllers can be computed by solving a one-parameter se-
quence of bilinear matrix inequality (BMI) optimizations by using Lya-
punov functions (LFs) and polynomial relaxations based on the square
matricial representation (SMR). In order to deal with the conservatism
introduced by the nonconvexity of the problem as well as the chosen
degree of the LF, a necessary and sufficient condition is proposed for
the analysis part to establish the tightness of the found upper bound. A
preliminary version of this technical note appeared in [12].

II. PRELIMINARIES

The notation is as follows. ; : natural and real numbers sets;
Cn(X ): set of functions whose first n derivatives are continuous
over the set X ; @X : boundary of set X ; 0n: origin of n; I : identity
matrix (of size specified by the context); �0: transpose of matrix
�;� > 0(� � 0): symmetric positive-definite (semidefinite)
matrix �;� > 0(� � 0): positive (nonnegative) entries vector
�;�jmax : maxf�1; . . . ; �ng for � 2 n.

Consider the class of continuous-time systems

_x(t) = f(x(t)) + '(x(t)) + g(x(t))u(t)

y(t) = h(x(t))

x(0) = xinit

(1)

where x(t) 2 n is the state, u(t) 2 n is the input, y(t) 2 n is
the output, xinit is the initial condition, f(x(t)); g(x(t)), and h(x(t))
are polynomial functions ofx(t), and'(x(t)) is a nonpolynomial func-
tion of x(t). The set of initial conditions of interest is defined as

A = fx 2 n : ai(x) � 0 8i = 1; . . . ; nag (2)

where a1(x); . . . ; an (x) are polynomials. We assume that A is com-
pact and define the set

K = fk(y) : n ! n such that, for u(t) = k(y(t));

lim
t!+1

x(t) = 0n; and w(t) � w0 for all

t 2 [0;+1) and for all xinit 2 Ag (3)

where k is a polynomial function, w(t) 2 n is a selectable design
signal to constrain the controller, and w0 2

n is a given vector. Let
us define the cost achieved by u = k(y) as

�(k(y)) = sup
x 2A;t2[0;+1)

z(t)jmax (4)

where z(t) 2 n is another selectable signal for optimization. The
following is assumed:

1) the signals z(t) and w(t) are expressed by

z(t) = [qz(x(t))
0
; lz(u(t))

0]0

w(t) = [qw(x(t))
0
; lw(u(t))

0]0 (5)

where qz; qw are polynomial functions and lz ; lw are linear func-
tions;

2) the origin is the equilibrium point of interest and the output van-
ishes in the origin.

The problems we address are as follows:
1) problem P1 (analysis): to compute the maximum of z(t)jmax for

the autonomous system

� = �(0n ); (6)
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2) problem P2 (synthesis): to compute the controller that minimizes
the maximum of z(t)jmax

k�(y) = arg min
k(y)2K

�(k(y)) (7)

�� = �(k�(y)): (8)

In the sequel, the dependence on the time t will be generally
omitted for ease of notation.

Let us observe that, depending on the choice of z, one can select
several costs such as

z = [h(x)0B0
1B1h(x); u

0B0
2;�u

0B0
2; B3x]

0

) zjmax = max kB1yk
2
2; kB2uk1; b3;1x; . . . ; b3;mx

where B1; B2; B3 are weighting matrices of suitable dimensions, and
b3;1; . . . ; b3;m are the rows of B5. Moreover, one can analogously de-
fine several constraints by similarly defining w and w0.

Before proceeding, let us introduce the complete SMR [3], [4]. Let
xfmg 2 � (m) contain all monomials of degree not greater than m in
x, and let p1(x) be a polynomial of degree 2m. The complete SMR of
p1(x) with respect to xfmg is

p1(x) = xfmg P1(�1)x
fmg

with

P1(�1) = P1 +N1(�1) (9)

where P1 is any symmetric matrix such that p1(x) =

xfmg P1x
fmg; �1 2 � (m) is a vector of free param-

eters and N1(�1) is a linear parametrization of the set
N1(m) = fN = N 0 : xfmg Nxfmg = 08xg. As ex-
plained in [3] and [4] �1(m) = ((n + m)!)=(n!m!) and
�1(m) = (1=2)�1(m)(�1(m) + 1)� �1(2m).

In the case of polynomials having special structures, more com-
pact representations can be derived. Indeed, polynomials without con-
stant and linear terms can be represented with respect to the vector
x[m] 2 � (m) containing all monomials of degree less than or equal to
m in x but the constant term. For these polynomials, the SMR is anal-
ogously defined by substituting N1(m) with the set N2(m) = fN =

N 0 : x[m] mNx[m] = 08xg. We have �2(m) = �1(m) � 1 and the
dimension of N2(m) is �2(m) = �1(m)� �1(m) + n + 1.

In the sequel, we will refer to P1 and P1(�) as SMR matrices of
p1(x). Unless explicitly specified otherwise, it will be assumed that
these matrices are defined with respect to xfmg.

III. ANALYSIS PROBLEM

We consider first the case '(x) = 0n. In order to simplify the de-
scription we assume the following.

A1) the linearized autonomous system is asymptotically stable,
that is, A is Hurwitz where

AjBjC =
d(f(x) + '(x))jdg(x)jdh(x)

dx
x=0

: (10)

The basic idea is to look for LFs whose unitary sublevel sets are
invariant sets and contain A. Then, we also require that these
sublevel sets are contained in the region where the supremum of
qz(x)jmax is bounded by a certain quantity � 2 . If we can find
this LF, it is guaranteed that � � �. More formally, let us denote
with v : n ! the LF candidate, and define with V(c) its sub-
level set

V(c) = fx 2 n : v(x) � cg (11)

Q(�) = fx 2 n : qz(x)jmax � �g: (12)

Suppose there exists v(x) and � 2 such that the following
holds.
C1) v(x) is radially unbounded, v(0) = 0 and v(x) > 08x 2
n n f0ng;

C2) rv(x)f(x) < 08x 2 V(1) n f0ng;
C3) A � V(1);
C4) Q(�) � V(1).

Then, � � �. Now, let us select v(x) as a polynomial of degree 2�v
and introduce

t1(x) = rv(x)f(x) + s1(x)(1� v(x))

t2(x) = v(x)� 1 +

n

i=1

s2;i(x)ai(x)

t3;i(x) = s3;i(x)(qz;i(x)� �) + 1� v(x); i = 1; . . . ; nq

(13)

where s�(x) are auxiliary polynomials known as Hilbert’s polynomials
(see, for example, [5]–[7]).

Theorem 1: Let � > 0 be a given real scalar,
and let 2�v be the chosen degree of v(x). Let V; S�;
T1(V; S1; �1); T2(V; S2;�; �2); T3;�(V; S3;�; �3;�) be SMR
matrices of the polynomials v(x); s�(x); t1(x); t2(x); t3;�(x),
respectively, with the matrices V; S1; T1(V; S1; �1) defined with
respect to extended vectors without constant term. Define

�� = sup
�2 ;V >0;S >0;�

� s:t: (15) (14)

T1(V; S1; �1) + �I < 0

T2(V; S2;�; �2) + �I � 0

T3;i(V; S3;i; �3;i) + �I � 0 8i = 1; . . . ; nq :

(15)

If �� � 0, then � � �.
Proof: Suppose that (15) is satisfied with � � 0. Let xf� g

be the extended vector in the representation of t1(x). From the first
inequality, we have

0 > x[� ] (T1(V; S1; �1) + �I)x[� ] = t1(x) + � x[� ]
2

2

that is t1(x) < 0 for all x 2 nnf0ng. From the other inequalities, we
similarly obtain that v(x) > 0 and s1(x) > 0 for all x 2 n n f0ng,
and that t2(x) � 0; t3;�(x) � 0; s2;�(x) > 0, and s3;�(x) > 0 for all
x. Now, from t1(x) < 0 and s1(x) > 0, it follows that rv(x)f(x) <
0 for all x 2 V(1) n f0ng. Analogously, we prove that x 2 V(1) for
all x 2 A, and x 2 Q(�) for all x 2 V(1). Moreover, v(x) is radially
unbounded because V > 0, hence C1–C4 hold.

Theorem 1 provides a sufficient condition to establish if � is an
upper bound of � by solving the optimization (14), which is a non-
convex optimization because the first inequality in (15) is a BMI be-
cause T1(V; S1; �1) is a bilinear function of V and S1. BMI optimiza-
tions can be locally solved through dedicated software; alternatively,
they can be approached via a sequence of convex LMI optimizations
by alternatively fixing one variable and optimizing with respect to the
other (we refer to this solution as V -S iterations) as done in Section V.
In order to find �, we can simply adopt a bisection algorithm mini-
mizing � subject to the condition of Theorem I.

Now, we describe how Theorem 1 can be extended to deal with the
case'(x) 6= 0n. First, it is worthwhile to observe that one may attempt
to deal with this case by performing state augmentations to system into
polynomial, or by substituting the nonpolynomial terms with their trun-
cated Taylor expansions. However, it is known that these attempts can
easily lead to conservative and disastrous results.

Our idea is to introduce truncated Taylor expansions taking into ac-
count the worst case remainder as proposed in [11] for estimating the
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domain of attraction. We suppose that assumptions A1 previously in-
troduced and A2 below hold.

A2) the function '(x) has the form

'(x) =

r

i=1

pi(x) i(xk ) (16)

where pi(x) are polynomials, k1; . . . ; kr are integers in [1; n], and
 i : Cd ([ci;min; ci;max]) ! are nonpolynomial functions for
integers di � 1 and scalars ci;min < 0; ci;max > 0.

Let us write  i(xk ) via the Taylor expansion centered in xk = 0 up
to the �ith power for a given integer �i in [1; di � 1] and express the
remainder in the Lagrange form

 i(xk ) = �i(xk ) + %i(xk )�i(bi) (17)

where �i(xk ) is a polynomial of degree �i; %i(xk ) is a monomial of
degree �i + 1; �i(bi) is the �i + 1th derivative of  i(xk ) evaluated
for xk = bi, and bi 2 [0; xk ] if xk � 0 or bi 2 [xk ; 0], otherwise.
Let us introduce the polynomials

t1;m(x)=rv(x) f(x) +

r

i=1

pi(x)�i(xk )

+ s1;m(x)(1� v(x)) +

r

i=1

(�i;m

+(�1)m s1;m;i(x))rv(x)pi(x)%i(xk ); m2f0; 1gr

t4;i(x) = s4;i(x)(xk � ci;max)(xk � ci;min) + 1� v(x);

i = 1; . . . ; r (18)

where s1;m(x); s1;m;i(x); s4;i(x) are polynomials, and

�i;m =
supb 2[c ;c ] �i(bi); if mi = 0

infb 2[c ;c ] �i(bi); if mi = 1
: (19)

Theorem 2: Let � > 0 be a given real scalar,
and let 2�v be the chosen degree of v(x). Let
S�; T1;m(V; S1;�; �1;m); T4;i(V; S4;i; �4;i) be SMR ma-
trices of the polynomials s�(x); t1;m(x); t4;i(x), respectively. Define

�
� = sup

�2 ;V >0;S >0;�
� s:t: (21) (20)

inequality (15) without the first inequality
T1;m(V; S1;�; �1;m) + �I < 0 8m 2 f0; 1gr

T4;i(V; S4;i; �4;i) + �I � 0 8i = 1; . . . ; r:

(21)

If �� � 0, then � � �.
Proof: Suppose that (21) is satisfied with � � 0. Let �x be any

point in V(1) and define

�m = [ �m1; . . . ; �mr]
0
; �mi =

0; if rv(�x)pi(�x)%i(�xk ) � 0

1; otherwise.

From t4;i(�x) � 0 it follows that �xk 2 [ci;max; ci;max]. Moreover,
because s1; �m(�x) > 0 and s1; �m;i(�x) > 0, from t1; �m(�x) < 0, we have

0 > rv(�x) f(�x) +

r

i=1

pi(�x)�i(�xk ) + s1; �m(�x)(1� v(�x))

+

r

i=1

�i; �m + (�1) �m s1; �m;i(x) rv(�x)pi(�x)%i(�xk )

> rv(�x) f(�x) +

r

i=1

pi(�x)�i(�xk )

+

r

i=1

�i; �m rv(�x)pi(�x)%i(�xk )

= rv(�x)(f(�x) + '(�x))

that is _v(�x) < 0. Following the remaining proof of Theorem 1, we
conclude that � � �.

Theorem 2 provides a sufficient condition for computing an upper
bound of � through BMI optimizations in spite of the presence of
nonpolynomial terms in (1). This is made possible by taking into ac-
count the worst case remainder of the truncated Taylor expansion in the
time-derivative of v(x). In particular, the unitary sublevel set V(1) is
constrained within the set

C = fx 2 n : xk 2 [ci;min; ci;max]; i = 1; . . . ; rg (22)

where ci;min; ci;max delimit the region of validity of the worst case
remainder computed through the bounds �i;m . If no information are
available a priori about the extension of V(1) and/or the computation
of �i;m is difficult, conservative estimates of ci;min; ci;max; �i;m can
be used. In fact, let us observe that the effect of these conservative
quantities, represented by term

!i;m (x) = �i;m rv(x)pi(x)%i(xk ) (23)

in the polynomials t1;m(x), can be compensated by increasing the de-
gree �i of the truncated Taylor expansion, which makes this term con-
vergent to zero.

IV. SYNTHESIS AND TIGHTNESS PROBLEMS

Let us consider first problem P2. In order to simplify the description,
we assume the following:

A3) the linearized system can be asymptotically stabilized through
a static output feedback, i.e., there exists K 2 n �n such that
A + BKC is Hurwitz where A;B;C are as in (10).

Let us express the controller k(y) in the class K in (3) as

k(y) = �
0
y
[� ] (24)

where �k is the degree of the controller, and � 2 � (� ) is the coeffi-
cient vector to be determined. Because the state updating law depends
linearly on the input, one can exploit the condition derived in Theorem
2 by letting the vector � vary together with the other variables of the
optimization (20). In particular, this can be done by adding t1;u(x) to
t1;m(x), where

t1;u(x) = rv(x)g(x)�0y[� ]
: (25)

Then, in order to take into account the presence of the input in the cost
signal z, we introduce for i = 1; . . . ; nl

t5;i(x) = lz;i �
0(h(x))[� ] � � + s4;i(x)(1� v(x)): (26)

In order to take into account the time-domain constraint on the signal
w, we also define the polynomials tj;� and sj;� for j = 6; 7 analogous
to those for j = 3; 5 for the cost signal z by replacing qz;i; lz;i; � with
qw;i; lw;i; w0;i, respectively.

Theorem 3: Let � > 0 be a given real scalar,
and let 2�v be the chosen degree of v(x). Let
T1;u(V; �); S�; T5;�(V; �; S5;�; �5;�); T6;�(V; S6;�; �6;�); T7;�
(V; �; S7;�; �7;�) be SMR matrices of the polynomials
t1;u(x); s�; t5;�(x); t6;�(x); t7;�(x), respectively, with T1;u(V; �)
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defined with respect to the extended vector used for defining
T1(V; S1; �1). Define

�
� = sup

�2 ;V >0;�;S >0;�
� s:t: (28) (27)

ineq: (21) appending T1;u(V; �) to T1;m(V; S1;�; �1;m)

T5;i(V; �; S5;i; �5;i) + �I � 0 8i = 1; . . . ; nl
T6;i(V; S6;i; �6;i) + �I � 0 8i = 1; . . . ; nq
T7;i(V; �; S7;i; �7;i) + �I � 0 8i = 1; . . . ; nl :

(28)

If �� � 0, then � � ��.
Proof: It is analogous to the proof of Theorem 2 by observing that

(28) implies t1;m(x) + t1;u(x) < 0. Hence, we have rv(x)(f(x) +
g(x)�0(h(x))[� ] < 0 for allx 2 V(1)nf0ng. Moreover, from (28), we
have lz jmax(�

0(h(x))[� )] � � and [qw(x)
0; lw(�

0(h(x))[� ])0]0 � w0

for all x 2 V(1). Therefore, V(1) is an invariant set for the controlled
system where zjmax � � and w � w0.

Theorem 3 allows one to compute an upper bound of �� and a con-
troller guaranteeing this upper bound by solving the optimization (27).
In the sequel, we will indicate with �2� ;� the best upper bound of ��

found with an LF of degree 2�v and a controller of degree �k .
Now, we consider the problem of establishing if the best upper bound

found for � by using Theorem 2 with an LF of degree 2�v is tight or
not. Let us indicate with �2� this upper bound, and let us observe that
�2� can be conservative for the following several reasons:

— the degree of the LF or auxiliary polynomials s�(x) is too low;
— the degree of the Taylor expansion for '(x) is too low;
— BMI optimizations are nonconvex.

The following result provides a necessary and sufficient condition to
establish if �2� is tight.

Theorem 4: Let V2� be the optimal value of V corresponding to
the found �2� , and let v2� (x) and V2� (1) be the LF and its unitary
sublevel set corresponding to V2� . Then

�2� = � () 9xR;init 2 T ; �t 2 [0;1) : xR(�t) 2 A (29)

where

T = @V2� (1)\ @Q(�2� ) (30)

and xR(t) is the solution of the system

_xR(t) = �f(xR(t))� '(xR(t))

xR(0) = xR;init:
(31)

Proof: “(” Suppose that 9xR;init 2 T and �t 2 [0;1) such
that xR(�t) 2 A. Then, because the system (31) evolves reversely
with respect to the system (1), it follows that by initializing (1) with
xinit = xR(�t), we have that x(�t) = xR;init. Because xinit 2 A,
it follows from the definition of � in (6) that z(�t)jmax � �. On the
other hand, z(�t)jmax = qz(x(�t))jmax = qz(xR;init)jmax = �2� be-
cause xR;init 2 @Q(�2� ), and hence, �2� � �. However, �2� � �.
Therefore, �2� = �.

“)” Suppose that �2� = �. From the definition of � in (6) and
because A is compact, it follows that 9xinit 2 A and �t 2 [0;1)
such that z(�t)jmax = �. Observe that x(�t) 2 @Q(�2� ) because
�2� = �. Suppose now for contradiction that x(�t) does not belong
to @V2� (1). Then, this implies either that v2� (x(�t)) > 1 or that
v2� (x(�t)) < 1. However, the former implies that x(�t) lies outside
an invariant set containing the initial condition xinit 2 A, and the
second implies that V2� (1) is not included in Q(�2� ) as ensured
by the third inequality in (15). Hence, both hypotheses are impossible

and hence x(�t) 2 @V2� (1). Therefore, x(�t) 2 T . Then, by ini-
tializing the reverse system (31) with xR;init = x(�t), we obtain that
xR(�t) = xinit 2 A, which concludes the proof.

The condition of Theorem 4 can be checked in two steps: 1) com-
puting T , which is the intersection of the boundaries of V2� (1) and
Q(�2� ); and 2) computing the trajectories of the reverse system (31)
initialized with the points in T and checking if at least one of these tra-
jectories intersects A. Observe that T is composed by a finite number
of points, typically one, being the intersection of two tangent surfaces.
The set T can be found by solving

v2� (x)� 1 = 0

qz(x)jmax � �2� = 0:
(32)

However, solving the system (32) can be a difficult task because it is a
nonlinear system.

Theorem 5: Define

Mi = T3;i(V2� ; S3;i;2� ; �3;i;2� ); i = 1; . . . ; nq (33)

where S3;i;2� and �3;i;2� are the found optimal values of S3;i and
�3;i. Then

T = x 2

n

i=1

Mi : x satisfies (32) (34)

Mi = x 2 n : xf� g 2 ker(Mi) : (35)

Proof: Consider x 2 T . Because x satisfies (32), there exists j
such that t3;j(x) = 0. Now, from (21), it follows that Mj � 0. Hence
0 = t3;j(x) = xf� g Mjx

f� g = xf� g (� ~M 0
j
~Mj)x

f� g =

�k ~Mjx
f� gk22, where ~Mj is any Cholesky factor of �Mj . Clearly,

k ~Mjx
f� gk22 = 0 if and only if xf� g 2 ker( ~Mj). Because

ker( ~Mj) = ker(Mj), we conclude the proof.
Theorem 5 provides an alternative way of computing the set T ,

which consists of finding the vectors x 2 n satisfying xf� g 2
ker(Mi) for i = 1; . . . ; nq . This can be trivially done if the dimen-
sion of ker(Mi) is 1 corresponding to a unique element in the set Mi

as shown in Example 1 in Section V. In other cases, one can use, for
example, the approaches described in [8]–[10]. Once the setsMi have
been found, one can simply obtain the set T by verifying if the vectors
contained in

n

i=1 Mi satisfy the equations in (32) via trivial substi-
tution.

Before introducing some examples in the next section, let us observe
that the BMI optimization can be initialized with any matrix K satis-
fying assumption A3) and any LF proving the asymptotical stability of
the linearized system controlled by such a matrix.

V. EXAMPLES

Example 1

Let us consider the nonpolynomial system

_x1 = x2 + 0:2x21x2 + 0:2 (1� ex )

_x2 = �1:5x1 � 2x2 � 1:1x22 + u

y = x1

xinit 2 A = x : kxk22 � 4

(36)

whose trajectories are shown in Fig. 1(a). We consider the following
synthesis problem:

arg min
stabilizing u(t)=k(y(t));ju(t)j<3

sup
x 2A;t2[0;+1)

kx(t)k1: (37)
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Fig. 1. Example 1. (a) Uncontrolled system trajectories starting in the set of initial conditions A. (b) System controlled with u = k (y): the trajectories are
confined in the unitary sublevel set V(1) (dashed curve) included in the region fx : kxk < � g (box). The trajectory x (t) intersects A, which means that
� is tight.

TABLE I
EXAMPLE 1: UPPER BOUNDS � COMPUTED THROUGH

SIMPLE V -S Iterations

This problem can be reformulated as in (7) with

f(x) =
0:2 + x2 + 0:2x21x2

�1:5x1 � 2x2 � 1:1x22
'(x) =

�0:2ex

0

g(x) =
0

1
h(x) = [1; 0] a1 = 4� x21 � x22

z = [x0;�x0]0 w = [u;�u]0 w0 = [3; 3]0: (38)

Let us use Theorem 3. We express'(x) as in (16) and (17) with �1 = 4
obtaining

'(x) = p1(x) 1(x1) p1(x) = [�0:2; 0]0

 1(x1) = ex

�1(x1) =

4

i=0

xi1
i!

%1(x1) =
x51
5!

�1(b1) = eb :

The bounds for the remainder �1(b1) are derived as in (19) with the
choice c1;min = �� and c1;max = � (where � is the candidate upper
bound) obtaining �1;0 = e� and �1;1 = e�� . Table I shows the upper
bounds �2� ;� computed through simple V -S iterations. The con-
troller corresponding to �6;3 is k6;3(y) = 0:900y+0:918y2�0:184y3.

Let us consider the problem of establishing if the upper bound
�6;3 is tight for the system controlled with u = k6;3(y). This can
be done by using Theorems 4 and 5. We have that ker(M1) = ;
and ker(M2) is a linear space of dimension one. There exists only
�x = [�0:665;�2:191]0 such that �xf3g = d and hence M2 = f�xg.
From (34), one obtains that T = f�xg. The trajectory xR(t) of (31)
with initial condition xR;init = �x intersects A in xR(�t) as shown in
Fig. 1(b). Therefore, the upper bound is tight.

Example 2

Consider the inverted pendulum controlled with a DC motor in
Fig. 2(a)

_x1 = x2
_x2 = (I +mL2)�1(�bx2 +Ktx3 +mgL sinx1)

_x3 = L�1
a (�Kex2 �Rax3 + u)

y = x1

(39)

where x1 is the angle, x2 is the angular speed, x3 is the armature cur-
rent, u is the input voltage, b = 0.5 J�s�rad�1 is the viscous friction
coefficient, I = 0.03 kg�m2 is the moment of inertia of the pole, m =
0.1 kg is the mass of the pole, L = 0.5 m is the distance from the
center of gravity to the pivot, Kt = 1 J�A�1 is the torque constant,
Ke = 0.01 v�s�rad�1 is the electric constant, La = 0.001 H is the in-
ductance, Ra = 0.1 Ohm is the resistance, and g is the gravitational
constant. We consider the synthesis problem

arg min
stabilizing u(t)=k(y(t))

sup
x 2A;t2[0;+1)

ju(t)j (40)

A = x :
x1
�=2

2

+
x2
0:1

2

+
x3
0:1

2

� 1 : (41)

Let us express  1(x1) = sin x1 as in (17) with �1 = 4 obtaining

�1(x1) = x1 �
x31
3!

%1(x1) =
x51
5!

�1(b1) = cos b1:

The bounds in (19) for the remainder �1(b1) are simply selected as
�1;0 = 1 and �1;1 = �1. In order to initialize our procedure, we ob-
serve that the linearized system can be stabilized by u = kliny with
klin 2 (�6:54;�0:049) and select, for example,K = �1. Table II(a)
shows the upper bounds �2� ;� computed again through V -S itera-
tions. The controller corresponding to �4;3 is k4;3(y) = �0:0490y +
0:0071y3 whose performance is illustrated in Fig. 2(b) and (c).

Let us observe from Fig. 2(c) that the convergence can be quite slow.
This happens because the linearized controlled system is almost mar-
ginally stable only. In order to cope with this problem, we can repeat the
procedure by imposing that the maximum real part of the eigenvalues
of the linearized controlled system is less than a negative value, for
example, �0:4. From standard root locus investigation, this is equiv-
alent to adding the LMIs �1 > �5:977 and �1 < �0:072 in the op-
timization, where �1 is the coefficient of the linear term of the con-
troller. Table II(b) shows the obtained upper bounds, and Fig. 2(d)
shows the corresponding performance. Observe that the convergence
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Fig. 2. Example 2. (a) Inverted pendulum controlled with a DC motor. (b) Trajectories starting in A with u = k (y). (c) Control input with u = k (y). (d)
Control input achieved by constraining the linear term of the controller.

TABLE II
EXAMPLE 2: UPPER BOUNDS � OBTAINED WITH (A) UNCONSTRAINED

AND (B) CONSTRAINED CONTROLLER LINEAR TERM

is much faster, clearly at the expense of a larger amplitude of the con-
trol signal.

VI. CONCLUSION

The problem of computing extremal values of the trajectories over
a given set of initial conditions and the problem of computing output
controllers minimizing these extremal values under time-domain con-
straints have been addressed for polynomial and nonpolynomial sys-
tems. It has been shown that an upper bound of the sought extremal
values as well as candidates of the sought controllers can be found by
solving a one-parameter sequence of BMI optimizations, which can be
approached through either recently developed software or simple iter-
ative convex LMI optimizations. Because the found upper bound may
be conservative due to the nonconvexity of BMI optimizations and the
chosen degree of the Lyapunov function, a necessary and sufficient con-
dition has been proposed for the analysis part to establish the tightness
of this upper bound in spite of all these sources of conservatism.
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