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Vehicle-Component Identification Based on
Multiscale Textural Couriers
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Abstract—This paper presents a novel method for identifying
vehicle components in a monocular traffic image sequence. In the
proposed method, the vehicles are first divided into multiscale
regions based on the center of gravity of the foreground vehicle
mask and the calibrated-camera parameters. With these multi-
scale regions, textural couriers are generated based on the local-
ized variances of the foreground vehicle image. A new scale-space
model is subsequently created based on the textural couriers to
provide a topological structure of the vehicle. In this model, key
feature points of the vehicle can significantly be described based
on the topological structure to determine the regions that are
homogenous in texture from which vehicle components can be
identified by segmenting the key feature points. Since no motion
information is required in order to segment the vehicles prior to
recognition, the proposed system can be used in situations where
extensive observation time is not available or motion information
is unreliable. This novel method can be used in real-world systems
such as vehicle-shape reconstruction, vehicle classification, and
vehicle recognition. This method was demonstrated and tested on
200 different vehicle samples captured in routine outdoor traffic
images and achieved an average error rate of 6.8% with a variety
of vehicles and traffic scenes.

Index Terms—Feature-point extraction, image segmen-
tation, texture analysis, vehicle-component identification, vehicle
occlusion.

I. INTRODUCTION

HE INVESTIGATION of -D objects from single monocu-

lar intensity images is one of the fundamental problems in
image analysis and computer vision. Recently, research studies
of vehicle-shape reconstruction [4], vehicle classification [1],
[6], [9], [19], and vehicle recognition [16], [18] have become
the most important areas in visual traffic surveillance. Most
of these studies, however, fail to distinguish vehicles with
similar dimensions due to the lack of other details. In visual
traffic surveillance, most vehicle-recognition systems simply
distinguish the size, dimension, shape, or contour of the vehicle,
from which vehicles can be categorized by type. Broadly, these
techniques addressed the problem of classifying vehicles of the
same size or dimension. If different vehicles of similar dimen-
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Fig. 1. Identification procedures of vehicle components.

sions are present, these methods become inadequate, as similar-
sized vehicles will most likely be recognized as one class be-
cause of the nonutilization of vehicle details, and consequently,
the reconstructed model of vehicle shape will also be identical.

To accomplish these difficult tasks in a real-world envi-
ronment, it appears necessary to use some advanced image-
processing methods to explore the intrinsic information of the
vehicle. Recently, high-tech surveillance cameras have been
emerging and providing high-resolution images. This motivates
us to consider decomposing the vehicle object into components
such as roof, bonnet, windscreen, etc. as an alternative way to
discriminate between different vehicles.

To resolve many of these problems, we propose a method, as
shown in Fig. 1. Assuming that the vehicle is in motion, we first
employ the extraction method, as described in [11]. From each
extracted vehicle, we then estimate its dimension [9] to identify
similar-sized vehicles and to compute its textural couriers based
on the centers of gravity of multiscale regions and the localized
variance values of the foreground vehicle image. By fusing
textural regions corresponding to a selected scale, key feature
points are estimated based on the topological structure of the
textural couriers. Subsequently, vehicle components can be
identified by segmenting those key feature points.

A brief problem analysis is given in the next section, which is
followed by an overview of the recent related research studies
in Section III. Details of the proposed method are presented
in Section IV, simulation results and discussions are spec-
ified in Section V, suggestions of further development are given
in Section VI, and conclusions are drawn in Section VII.

II. PROBLEM ANALYSIS

Typically, research development of visual traffic surveillance
can be considered in two major areas: the well-developed area
and the developing area. As shown in Fig. 2, the well-developed
area includes the techniques of background estimation, camera
calibration, vehicle segmentation, deformable modeling, and
occlusion detection, as indicated as solid-line diagrams. These
techniques can simply utilize image-processing algorithms
and geometry parameters to achieve fulfilled results. Beyond
this area, researchers are currently investigating the devel-
oping area, which includes the techniques of vehicle-shape
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Fig. 2. Conceptual diagram of visual traffic surveillance systems.

Fig. 3.

Three-dimensional cuboid model.

reconstruction, vehicle classification, vehicle recognition, and
other advanced post-analysis processes of an image sequence,
as indicated by dashed-line diagrams. These techniques require
timely track data of image sequence and detailed contents
of the vehicle in order to attain more precise results. Our
technique of component identification would be the major role
between these well-developed and developing areas as we can
contribute further distinctive characteristics. For that reason,
the utilization of vehicle details would lead to much better
achievement of those techniques in the developing area.

As the technique of component identification is a critical
issue in visual traffic surveillance, we should further investigate
the challenges of this technique. In many research studies,
vehicles could be categorized based on the length of vehicle.
To calculate the vehicle length, a simple 3-D cuboid model can
be employed to fit the vehicle, as shown in Fig. 3.

A foreground vehicle mask is symbolized as a shaded circle,
and the dimension can be calculated by finding the edges
and vertices with a calibrated-camera model [9]. An example
developed in [9] is shown in Fig. 4, as the shape of the bus is in
the vicinity of the cuboid; thus, we can define point V7 as the
intersection point which is extended from vanishing point VP x
to vertex Vs, VPy to vertex V5, and VP to vertex Vy, as shown
in Fig. 4(a). Along with point V7, an individual component
can easily be defined within one of those quadrangles. For
instance, the edge between the roof and side windows of the
bus can be aligned on line V5 V7. However, many small vehicles
are not in the shape of cuboid. Fig. 4(b) shows an example of
a sedan; if we also define V7 as the intersection, there is no
help in identifying the individual component, such as the edge
between the roof and side windows, as it might not be aligned
on line Vi V7. Therefore, our challenges and focus of this paper

Fig. 4. Deformable models of bus and sedan. (a) Large vehicle. (b) Small
vehicle.

would mainly be on identifying the vehicle components of
small and streamlined vehicles.

III. RELATED WORKS

Generally, in visual traffic surveillance, many research stud-
ies addressed unsatisfied results due to the lack of classifying
component details of same-sized vehicles, as shown in Fig. 2. In
vehicle-classification [1], [6], [9], [19] and vehicle-recognition
systems [16], [18], vehicles could only be identified into either
large or small vehicles or into predefined vehicle models, and
no further classified or recognized components could be made.

Avery et al. [1] presented an image-processing algorithm
for length-based vehicle classification, with an image stream
captured by an uncalibrated video camera. The basis of the
algorithm was to relatively compare vehicle lengths with each
other to estimate long vehicles. Gupte et al. [6] modeled vehi-
cles as rectangular patches to estimate vehicle parameters with a
Kalman filter, and afterward, a nonrigid model-based approach
was used to classify vehicles. Lai et al. [9] extracted moving
vehicles from traffic image sequences and fitted them with a
simple deformable vehicle model. By using a set of coordina-
tion mapping functions derived from a calibrated-camera model
and relying on a shadow removal method, vehicle dimensions
were estimated. Wei et al. [19] classified vehicles by using a pa-
rameterized model, as well as neural networks, which describe
the features of the vehicle. In this model, vertices and their topo-
logical structure were regarded as the key features, and vehicles
were recognized based on multilayer perception networks.

Sidla et al. [16] presented an appearance-based pattern
matching algorithm which relied on principal component analy-
sis (PCA) to detect and classify cars and trucks under geometric
constraints. Tan and Baker [18] extracted vehicle by matching
model discrimination. The algorithms eliminated the need of
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explicit symbolic feature extraction and matching. The pose
and class of an object were determined by a form of voting and
1-D correlations directly based on image gradient data.

In vehicle-shape-reconstruction system, Fung et al. [4] ad-
ditionally considered vehicle shape for classification based on
vehicle motion. A 3-D vehicle-shape information from a 2-D
monocular image sequence was recovered by extracting stable
feature points, corresponding feature points between frames,
computing the heights from projected displacements, and using
the forward and backward image-to-world coordinate mapping
function. However, the dimension estimation error might be
caused by the accuracy of the feature-correspondence method.

IV. PROPOSED METHOD

In the proposed method, it is assumed that the surveillance
camera is road-side-mounted and stationary, whereas the light
source can be single and strong, as in daytime, or can be
multiple and diffused, as in nighttime. Based on these assump-
tions, the proposed method comprises the following: 1) multi-
scale textural-courier construction and 2) key-feature-point
estimation.

A. Overview

In general, a visual traffic surveillance system can be shown
in Fig. 2. In the figure, background estimation estimates the
background image from the image by averaging out the moving
objects from the image. A “scoreboard algorithm” from [10]
is employed in this paper for the background estimation as it
is fast and accurate for the estimation of the stationary back-
ground. The basic idea of this algorithm is that it keeps track of
the pixel variations in the image sequence to select between the
running-mode and the running-average algorithms in each esti-
mation in order to optimize both the speed and accuracy of the
algorithm. With the estimated background image, it is possible
to determine a set of camera parameters such as pan angle, tilt
angle, swing angle, camera distance, and focal length from the
background image through the process of camera calibration.
The camera-calibration method proposed by Fung et al. [5] em-
ployed road-lane markings which were readily found in typical
traffic scene as the calibration pattern. The proposed method
utilized the geometric properties of the endpoints of the road-
lane markings to determine the required camera parameters
that governed the mapping relationship between the 2-D image
and 3-D world coordinates. Vehicle segmentation segments the
vehicles from the input image based on the background image.
The texture-based vehicle-segmentation approach described in
[11] is employed to extract the moving vehicles due to its
ability to accurately generate a vehicle mask with the shadow,
as well as the reflection on the vehicle chassis excluded from
the segmentation. The basic idea of this method is to con-
sider the differences in texture, luminance, and chrominance
between the input and background frames in order to form
three likelihood maps and to perform a logical OR operation on
the likelihood maps followed by the morphological operations
to produce a foreground mask that represents the segmented
vehicle. Deformable modeling fits a 2-D projection of a simple

3-D cuboid model onto a binary representation of the seg-
mented vehicle based on the geometric property of the extracted
vehicle mask. The projection is done by a set of coordination
mapping functions derived from a calibrated-camera model [9]
based on the camera parameters. This set of calibrated-camera
parameters is useful in providing the transformation between
the 3-D world and 2-D image coordinates, as seen by the cam-
era. After model fitting, the cuboid model is transformed from
the 2-D image coordinates back into the 3-D world coordinates
in order to determine the width, length, and height of the vehicle
[9]. This estimation method enables us to identify the vehicles
of similar dimensions for identification in the next step. Occlu-
sion detection determines whether there is an occlusion inside
the fitted 3-D cuboid model. The method that calculates the area
ratio between the binary vehicle mask and the cuboid model
is used to detect occlusion due to its simplicity. Occlusion is
detected when the area ratio exceeds a predefined value, which
indicates that the model is fitted onto more than one vehicle
since there is a large gap between the vehicle mask and the
fitted model due to occlusion. In this paper, our focus is on
proposing a new method for component identification, which
provides more significant vehicle features for further advanced
research studies in visual traffic surveillance.

B. Vehicle-Component Identification

Apart from vehicle-component identification, the most com-
mon ways of finding the features of vehicles are based on
brightness, color, corners, and edges of the vehicle body. For
the brightness and color criteria, different styles of vehicle may
contain different values of brightness and color. For instance,
if the vehicle is black in color, that will not be an easy task to
separate vehicle body and wheels. For the corners and edges
criteria, they require knowledge-based methods to distinguish
their features. For instance, if we find the edges of streamlined
sedan [Fig. 18(a)] by Canny edge detection (as shown in Fig. 5),
the simulated result shows that there are too many undesired
edges. If we have no human knowledge of the vehicle model
and camera-calibration parameters, it is extremely harsh to de-
fine which edges correspond to which component boundaries.

Therefore, our challenges would mainly be on identifying
vehicle components by segmenting the component boundaries.
Based on our observation on traffic image sequences, different
kinds of vehicle may contain different components. For exam-
ple, a roof window or an antenna can be optional for vehicles.
In such situation, we have to define certain vehicle features that
are robust enough to segment components, and therefore, we
based on typical traffic scenes, as shown in Fig. 6, to define the
three key feature points K7, Ko, and K3 of the vehicle that is
coming toward the camera, as shown in Table I.

Our decisions of making these three key feature points are
mainly based on the characteristics of vehicles that most vehi-
cles have windscreen and headlights, except for motorcycles.
For the motorcycle case, it can initially be classified by com-
puting vehicle dimensions, as mentioned in [9]. The robustness
of these key feature points can be adapted from the different
kinds of vehicle such as sedan, jeep, hatchback, van, minibus,
and bus. All of them contain these key feature points, and
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Fig. 6. Camera model of visual traffic surveillance.

TABLE 1
DEFINITION OF KEY FEATURE POINTS
Key Feature Point Definition
Intersects with roof, windscreen
K . :
and side windows
K, Intersects with windscreen, side windows, bonnet
and door panels
K Intersects with bonnet,
3 grille and fender

vehicle components can further be decomposed by segmenting
through these key feature points. The estimation of key feature
points requires the technique of constructing multiscale textural
couriers, which will be discussed in the next section.

After we search out the key feature points K, Ko, and
K3, the next step is to identify the major component-region
boundaries. In the proposed method, the component-region
boundaries are computed by subdividing six diverse component
regions through the vanishing points VPx, VPy, and VP, as
shown in Fig. 7. Fig. 7(a) shows an image with a foreground
vehicle contour, whereas Fig. 7(b) shows the dashed lines which
are indicated as straight lines elongated through the vanishing
points VPx, VPy, and VP, as developed in [9].

Fig. 7(c) shows the defined key feature points K, Ko, and
K3 of vehicle, whereas the component-region boundaries can
be computed by extending the key feature points K;, Ko,
and K3 to the vanishing points VPx, VPy, and VPz, as
shown in Fig. 7(d). With the component-region boundaries, the
components of regions Ry, Rw, Rp, Rg, Rs, and Rp can be
defined in Table II.

C. Multiscale Textural-Courier Construction

As shown in Fig. 2, the vehicle-segmentation process
segments the vehicles from the input image based on the

background image. The texture-based vehicle-segmentation ap-
proach described in [11] is employed to extract the moving
vehicles. If occlusion detection determines that there is no
occlusion inside the fitted 3-D cuboid model, the component-
identification process can take place by starting with the con-
struction of the multiscale textural couriers.

After the vehicles have been segmented, the vehicle mask
Oy of each similar-sized vehicle is constructed by segmenting
the boundary of the vehicle through the subtraction between
the input frame f; and the stationary background frame fi,. Oy
is defined as the root region and is symbolized as gray ellipse
in Fig. 8.

The scale level L of the root region is classified as scale 0,
and therefore, the vehicle mask Oy can be written as R?, which
is also defined as scale 0 of division X (R$) and division
Y (RY). The next step is to calculate the next-scale bisection
regions of division X with locations m = 0 and m = 1 as R}(O
and Rﬁﬁ, respectively, as shown in Fig. 8(a). The bisection
regions of division Y with locations n = 0 and n = 1 as R%,O
and Rl1 , respectively, are shown in Fig. 8(b).

As shown in Fig. 8(a), the subregions RY and RY are

— .
separated by the vector VPyC% as the boundary, which is
constructed by connecting the vanishing point VPy and the
central pixel C§ of region R%, where the central pixel C§
of every individual region R)L( can be calculated by the center
of gravity as
i,jeRL
Cx, = = — M
Xom Z OV (Za J )

z‘,jeR)L(m

where m is the region location from 0 to 2 — 1, 4 and j are
the position displacements within the vehicle mask Oy, and L
is the region scale level. Mathematically, the bisection regions
REH and RYT! | of next scale level L + 1 can vertically be

divided along with Y’ as

R (i,5) =R%, (7, 5),

m

if ¢ <C¥ )

m

REH if >C% (3

.o L o

Xom+1 (’L7 ]) = RXm (Zla jl)a

where i and j' are the position displacements of the 3-D

coordinates projected on the image. Fig. 9(a) shows the concept

of locating the subregions R)L('*'1 and R)L(+1 and the central

. e 2m, 2m+1

pixel C )L(m of each individual region R)L(m.

With the same approach of division X, the subregions R%,O

0
and R%/l are separated by the vector VP x C}y- as the boundary,
which is constructed by connecting the vanishing point VPx
and the center pixel CY- of region RY., as shown in Fig. 8(b).
The central pixel C{;ﬂ of every individual region Rffn can be
calculated by the center of gravity as
i,jERL
Cy = . — “4)
n Z OV (Za J )

i,jeR‘L,n

where 7 is the region location from 0 to 2% — 1, 7 and j are
the position displacements within the vehicle mask Oy, and L
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VPx

VP,
(©
Fig. 7.
TABLE 1I
DEFINED VEHICLE COMPONENTS
Region Components
Rr Roof
Rw Windscreen
Rp Bonnet
Rg Grille, Headlight, Bumper
Rgs Side Windows
Rp Door Panels, Fender, Wheel

is the region scale level. Mathematically, the bisection regions
Rf/;l and RSL/;;1+1 of the next scale level L + 1 can horizontally

be divided along with X" as
Ry, j) =Ry, (.,
Ry (i) = Ry, (i',5),
where 7' and j' are the position displacements of the 3-D
coordinates projected on the image. Fig. 9(b) shows the concept
of locating the subregions R}L,;'nl and RXL’;L and the central

if i'<Cy 5)

if i'>Cy (6)

pixel Cé of each individual region RXL,
Finally, the multiscale regions R,an can be formulated by

intersecting the division X regions R;%m and the division Y
regions R}L,n as

RL . =R% NRy. @)

If Oy is defined as the root region RO, as shown in Fig. 8§,
then R? can be divided into four scale 1 subregions R o, R ;.
R} o, and R} ;, as shown in Fig. 10. This illustrates the concept
of partitioning Ov into the multiscale regions R,I;m.

The purpose of construing the multiscale regions is to equal-
ize the area of each region within the same scale level while
keeping the localization features. After partitioning Oy into
the multiscale regions R”, the intensity courier R} of each

subregion Rﬁ%n is determined based on intensity averaging

RL i,J€RE ®)
T > Ov(i,j)
i,jeRE, ,

Vehicle boundaries of common vehicle. (a) Vehicle contour. (b) 3-D cuboid. (c) Key feature points. (d) Segmented component regions.

and the textual courier R%  of each subregion RL , is
calculated based on intensity variance

. . L 2
> (A6 -RE)
1,jERE
RE = . ©)
T > Ov(id)

i,jERL

m,n

If the textual courier R%m _ does not occupy any pixel f; (4,7)

within the vehicle mask Oy, this textual courier R% N is
called null courier which has no any value. At scale zero, the
textual courier R is the largest and continues to decrease

in subsequent scales until R%m _ becomes zero for the small-

est subregion R,Ln}n, as shown in Fig. 11. These squarelike

multiscale regions are useful in comparing visual properties
between vehicle components of inconsistent sizes. Compared
with the traditional edge detector of segmentation, our textural
couriers RL are helpful in sorting out vehicle components as
each vehicle component has a comparative textural relationship
with others. This is significantly helpful in judging edges that
are capable of being elongated to the vanishing points VP x and
VPy, so that our defined key feature points can be estimated
based on these relationships.

The process of estimating the key feature points will take
place at one of the textual-courier R% scale levels. This scale
level is called as the critical scale C, which has comparative
textural properties for the analysis of the key feature points. To
justify the critical scale C, we have to calculate the number T'*
of the textual couriers R:%m , that have zero values and the total
number (m + 1) (n + 1) of subregions R}, ,, within the same
scale level. Subsequently, we find their ratio S as

TL
L

5 (m+1)(n+1) (10)
where m and n are the region locations from 0 to 2% — 1. To
find a suitable scale for the estimation of the key feature points,
we define the critical textural scale C, which is chosen when

the difference between S“*1 and S* is maximum
C=0L, if max(S"t' —8%).

Y
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Fig. 11. Multiscale textural couriers.

If a scale lower than C' is chosen for the analysis, the
component characteristics are insufficient to warrant an accu-
rate identification. On the other hand, if a scale higher than
C 1is instead chosen, too many superfluous features have to
be computed and discriminated. Once C' is determined, ve-
hicle components can be segmented by discovering the key
feature point of the textural couriers R% on the critical
textural scale C. Such components include the roof, bonnet,
door panels, fenders, bumpers, wheels, windows, headlights,
grille, etc.

D. Key-Feature-Point Estimation

We constructed our textural couriers RS based on the van-
ishing points VPx and VPy, and therefore, the key feature
points K7, K5, and K3 can straightforwardly be projected by
locating the horizontal and vertical edges in which the defined

L
VPY CX m

; N Y2m+l #
- ~ Z
VRCy o [ m————
Ym
(b)
01 » N-1
0 L[]
1
N [ ] Low Textural Courier
; [] Null Courier
T
[ High Textural Courier
K [ [ N
i || Il Key Feature Courier
v
M-1 ]

Fig. 12. Textural-courier map.

high textural couriers are shown in Fig. 12. Fig. 12 shows
the topological relationships T'(m,n) of the textural couriers
of typical vehicles with scale level 4, where M = 2%, and
N = 2. For simplicity, the low textural courier is demon-
strated as a white-color square, whereas the high textural
courier is demonstrated as a dark-gray-color square, the null
courier is demonstrated as a light-gray-color square, and the
three key feature points are demonstrated as black-color squares
and defended as key feature couriers.

As shown in Table I, K intersects with the roof, windscreen,
and side windows, and therefore, there is an L sharp of high
textural couriers, indicating a vertical boundary between the
roof and windscreen and a horizontal boundary between the
roof and side windows. K> has similar properties as Ki; it
intersects with the windscreen, side windows, bonnet, and door
panels so that there is also an L sharp of high textural couriers,
indicating a vertical boundary between the windscreen and
grille and a horizontal boundary between the side windows
and door panels. For K3, it intersects with the grille, bonnet,
and fender, and therefore, it lies between the region of high
textural couriers with grille and the region of low textural

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 5, 2009 at 03:49 from IEEE Xplore. Restrictions apply.



LAM et al.: VEHICLE-COMPONENT IDENTIFICATION BASED ON MULTISCALE TEXTURAL COURIERS 687

0] ———————————» NI 01 > N-1
0
1 1
v
M1 M-1
(@) (b)
Fig. 13.  Textural-courier map. (a) Length of roof. (b) Width of vehicle.
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Fig. 14. Textural couriers map. (a) Location of K7. (b) Locations of K2
and K3.

couriers with bonnet and fender. Based on these observations,
the key feature couriers can be evaluated in the following
procedures.

1) Evaluate the length of the roof and the width of the
vehicle.

2) Search the key feature courier K.

3) Search the key feature couriers Ko and K.

To demonstrate the procedures of finding the key feature
points, we assume the high textural courier T'(m,n) as value 1
and the low textural courier T'(m,n) as value 0. We first find
the key feature couriers by finding the length of the roof [,
and the width of the vehicle wy. As we can see, the length
of the roof [, approximately equals the length of the regions
that contain the most nonnull couriers at the first row (m = 0),
as shown in Fig. 13(a), with dark gray squares, and we define
the length of roof [, starting from n = 12ton = N — 1 in this
demonstration case.

With the same approach, we obtain the width of the vehicle
wy by finding the length of the regions that contain the most
nonnull couriers at the first column (n = 0), as shown in
Fig. 13(b), with dark gray squares, and we define the width
of vehicle wy starting from m =8 to m = M — 1 in this
demonstration case.

The second procedure is to find the location of key feature
courier K. As the width of the roof should be smaller or equals
the width of vehicle wv,, we therefore define the location of the
key feature courier K to be within the region thatis N — [,. <
n<N-—-1and 0 <m < wy — 1. In the demonstration case,
the searching region of K3 is 12 <n <15and 0 <m < 7, as
shown as dashed square lines in Fig. 14(a).

4+
3]
£ 2
(72}
14
0
0 1 2 3 4 5 6 7
m
Fig. 15. Location of K.

Sum

7 8 9 10 11

Fig. 16. Location of K2 and K3.

As K contains the highest value of textual couriers toward
the vanishing point VP x, we can therefore sum up the horizon-
tal value of textual couriers of every row within the searching
region of K and find the location that contains the highest
value, as shown in Fig. 15, in this demonstration. We can see
that the highest value is located when m = 5, whereas the
contour of the vehicle is located on m = 0. Subsequently, we
identify the location of key feature courier K1 = (5, 12) in this
demonstration case.

The third procedure is to find the locations of key feature
couriers K9 and K3. As we know the width of vehicle wy
and the location of key feature courier K, therefore, we can
define the locations of key feature couriers Ko and K3 to
be within the searching region 0 < n < N — [, and NC,, <
m < NC,,, + wy, where NC,,, is the number of null couri-
ers of each column at the top. In the demonstration case,
the searching region of Ky is 0 <n <12 and {8,...,1} <
m < {15,...,8}, as shown as dashed square lines in
Fig. 14(b).

As the region between K, and K3 contains the lowest
textual couriers, we can therefore sum up the value of ver-
tical textual couriers of every column within the searching
region and find the longest locations that have a lower value,
which means that the value is lower than the median of
those values. In this demonstration case, we can see that
the longest locations that contain relatively low values are
from n =4 to n =7, as shown in Fig. 16, and therefore,
we can define the boundaries at n =3 and n = 8. Conse-
quently, we identify the locations of key feature couriers Ky =
(9,8) and K3 = (10,3) in this demonstration case, where
there are three and two null couriers at n =3 and n =8,
respectively.

Once we get these three key feature couriers, we can inverse
transform the corresponding pixel of input frame f; from each
key feature courier, and the pixel location of each key feature
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The Number of Each Type of Vehicle in the Experiment Database
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Fig. 17. Number of each type of vehicle in the experiment database.

(b)

Partitions on a yellow sedan. (a) Input frame f;. (b) Scale 3 regions.

Fig. 18.

point of the input image can be calculated by finding the central
pixel of those corresponding pixels as

o 1,j€Ky Yo = 1,j€K, (12)
1,J€EKy 1,J€Ky

where v € 1,2,3, and x,, and y, are the central pixels of
those key feature points K. Afterward, we can segment those
component regions, as shown in Fig. 7, to segment those vehicle
components.

V. RESULTS AND DISCUSSIONS

The proposed method was evaluated on 200 sets of real-
world monocular traffic image sequences that have been cap-
tured under different viewing angles, vehicle sizes, and colors
for testing. All the images were taken in an outdoor environ-
ment where the effects of shadow and reflection of vehicle
chassis are prominent. The set of images contains most of
the vehicle types on the road, including sedan, taxi, minibus,
minivan, motorcycle, medium goods truck, heavy goods truck,
single-deck bus, double-deck bus, and special vehicles such as
fire and cement trucks. The number of each type of vehicle is
shown in Fig. 17.

For evaluation purposes, the reference key feature points K7,
K/, and K7 of vehicle are required for subsequent calculation
of classification error. These key feature points K1, K}, and K}

TABLE 1II
CRITICAL SCALE LEVEL

L T (m+1)(n+1) SL S+l gt
0 0 1 0.00% 0.00%
1 0 4 0.00% 0.00%
2 0 16 0.00% 0.00%
3 0 64 0.00% 0.00%
4 0 256 0.00% 0.00%
5 0 1,024 0.00% 0.12%
6 5 4,096 0.12% 0.10%
7 37 16,384 0.23% 27.01%
8 17,849 65,536 27.24% 4.06%
9 82,045 262,144 31.03% N. A.

are manually defined by combining the visual observation on
images and the human knowledge about the vehicle. The error
rate ER of each component region R is calculated according to
the number of pixels of the error difference region R4 and the
number of pixels of the reference region Ry as

> |Ra(i, )
i,jeR

Z Rf(Zaj)

i,jER

ER = (13)

where R4 indicates the difference between the reference region
Ry and the computed region Ry as

Out of all the tested images, a yellow sedan sample, as shown
in Fig. 18(a), was chosen to illustrate in details the working of
the proposed method, and the corresponding scale 3 regions
R3 are shown in Fig. 18(b). We can see that regions R,
R} 1. R}y, RE,. R3¢, and RS are not within the vehicle
mask, and therefore, their corresponding textual couriers R%o,o’
R, Ry o» R 7o Rib7 6, and R, are to be defined as null
couriers.

After constructing the multiscale textural couriers R%, we
compute the ratio SL of each scale level, as presented in
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Table III. We can see that C' = 7 as max (ST — ST occurs
on scale level 7.

With reference to Table III, the critical textural scale C
occurs at scale 7. To show the trend of courier surfaces, Fig. 19
shows the surfaces of textural couriers R in 3-D at scales 3,
6, 7, and 8. As can be seen, scale 3 is too coarse to enable a
good segmentation, whereas scale 8 contains too much detail.
If a scale lower than C'is chosen, the component characteristics
are insufficient to warrant an accurate identification. On the
other hand, if a scale higher than C'is instead chosen, too many
superfluous features have to be computed and discriminated.

With the textural-courier map 7'(m, n), we are able to get the
key feature couriers K1, K, and K3 based on their topological
structure. We start to determine the length of the roof I, by
finding the length of the regions that contain the most nonnull
couriers at the first row. Fig. 20 shows the total sum of top-left
null couriers of each column that projected into the first row.
The values of locations 105 < n < 126 are zero at the first row,
and therefore, the edge between the roof and the windscreen oc-
curs on n = 105. Curiously, the values of location 80 < n < 83
are also zero, which indicates the region of the side mirror.

Variance

(d)

Number of Null
Couriers

90 99 108 117 12

18 27 36 45 54 63 72 81

n

Fig. 20. Length of roof.

We then determine the width of the vehicle wy by finding
the length of the regions that contain the most nonnull couriers
at the first row. Fig. 21 shows the total sum of the top-left null
couriers of each row that projected into the first column. The
values of locations 56 < n < 115 at the first row are zero, and
therefore, we can start counting the width of the vehicle wy
fromn = 56 ton = 127.

As K contains the highest value of textual couriers toward
the vanishing point VPx, we therefore sum up the horizontal
textual-courier values of every row within the searching region
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Fig. 21. Width of vehicle.
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Fig. 23. Location of K3 and K3.

of K, and find the location that contains the highest value, as
shown in Fig. 22. We can see that the highest value is located
when m = 48, and therefore, we can estimate the location of
key feature courier Ky = (48, 105) in this sample.

As the region between K> and K3 contains the lowest
textual couriers, we can therefore sum up the vertical value of
textual couriers of every column within the searching region
and find the longest locations that have a lower value. In this
sample, the median value is about 0.00151, and we have found
that the longest locations that contain relatively low values are
from n = 39 to n = 62, as shown in Fig. 23; thus, we can
estimate the location of key feature couriers Ky = (92, 38)
and K3 = (83,63), where there are 21 and 12 null couriers at
n = 38 and n = 63, respectively.

Once we have computed these three key feature couriers, we
can inverse transform the corresponding pixels of input frame f;
from each key feature courier. The pixel location of key feature
points are shown in Fig. 24(a), and the component boundaries
are shown in Fig. 24(b). For comparison, the component bound-
aries with the reference key feature points K7, K, and K7 that
are manually defined are shown in Fig. 25.

The corresponding component regions Rg, Rw, Rs, Rg,
Rg, and Rp are identified, as shown in Fig. 26(a)—(f), respec-
tively. The black region indicates that the algorithm mistakenly
identifies the other regions as part of the local region, whereas
the white region conversely indicates that the algorithm identi-

(b)

Fig. 24. Yellow sedan. (a) Key feature points. (b) Segmented regions.

(d (e)

Fig. 26. Vehicle components. (a) Rp. (b) Rw. (¢) Rr. (d) Rg. (¢) Rp.
() Rs.

fies itself as the others. The ER of regions Rgr, Rw, Rs, Ra,
Rg, and Rp are found to be 7.6%, 8.2%, 4.6%, 1.4%, 17.3%,
and 3.9%, respectively. Fig. 26(c) shows the capable result
of segmenting roof, although there is a reflection boundary
on the roof. This error would not significantly affect vehicle
classification, as vehicle components (i.e., roof, windscreen,
bonnet, grille, side windows, and door panels) were success-
fully identified, despite the presence of slight segmentation
error due to minor variations in vehicle geometry. As such,
there is a sufficient information to construct a relational graph
that represents the vehicle for classification by means of graph
matching.

The proposed method also works well with the vehicle that
has a roof, as shown in Fig. 27(a). Fig. 27(b) shows the surfaces
of textural courier RS in 3-D at critical scale 7. With the
same approach, we inverse transform the corresponding pixels
of input frame f; from each key feature courier. The pixel
locations of key feature points are shown in Fig. 28(a), and the
component boundaries are shown in Fig. 28(b).
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(a)

Fig. 27. Red sedan. (a) Input frame f;. (b) Texture couriers Rg.

Fig. 28. Red sedan. (a) Key feature points. (b) Segmented regions.

(b)

Fig. 29. White Sedan. (a) Key feature points. (b) Segmented regions.

(b)

Fig. 30. Red taxi. (a) Key feature points. (b) Segmented regions.

(b)

Blue hatchback. (a) Key feature points. (b) Segmented regions.

Fig. 31.

In the third sample, a white sedan with a roof window was
tested, and the result of the estimated key feature points is
shown in Fig. 29(a). This vehicle can be segmented into the

(b)

White van. (a) Key feature points. (b) Segmented regions.

(b)

Fig. 33.  Yellow bus. (a) Key feature points. (b) Segmented regions.

predefined component regions, as shown in Fig. 29(b), except
the edge between K; and K5 that cannot be located on the
boundary between the windscreen and side windows. In the
fourth sample, a red taxi with a light box cap was tested,
and the results of the estimated key feature points and the
identified component regions are shown in Fig. 30(a) and (b),
respectively. Although the roof contains reflection regions and
light box cap, the result of the segmented component regions
is promising. In the fifth sample, a blue hatchback with a roof
window was tested, and the result of the estimated key feature
points is shown in Fig. 31(a). The boundaries of the segmented
component regions are highly qualified with this streamlined
type vehicle, as shown in Fig. 31(b). In the sixth sample, a white
van was tested, and the result of the estimated key feature points
is shown in Fig. 32(a). This vehicle can be segmented into the
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Fig. 35. Silver sedan. (a) Key feature points. (b) Segmented regions.

(b)

Fig. 36. Silver sedan. (a) Key feature points. (b) Segmented regions.

(b)

Fig. 37. Black sedan. (a) Key feature points. (b) Segmented regions.

predefined component regions, as shown in Fig. 32(b), and the
result is very promising.

For large-sized vehicles, the key feature point can also be
determined. In the seventh sample, a yellow bus was tested, and
the results of the estimated key feature points and the identified
component regions are shown in Fig. 33(a) and (b), respectively.
In the eighth sample, a blue bus of different model type was
tested, and the results of the estimated key feature points and the
identified component regions are shown in Fig. 34(a) and (b),
respectively.

Fig. 39. Silver blue wagon. (a) Key feature points. (b) Segmented regions.

(b)

Fig. 40. White minibus. (a) Key feature points. (b) Segmented regions.

Generally, the silver and black streamlined vehicles are the
worst scenario, and an ill-defined problem in typical research
studies (as this scenario) does not provide any chrominance
features; in addition, the luminance values of the vehicles are
lower than the road surface. Advantageously, this scenario
can be solved well with textual properties, as demonstrated
in the following three sample cases. In the ninth sample, a
silver sedan was tested, and the results of the estimated key
feature points and the identified component regions are shown
in Fig. 35(a) and (b), respectively. In the tenth sample, a silver
sedan of different model type was tested, and the results of
the estimated key feature points and the identified component
regions are shown in Fig. 36(a) and (b), respectively. In the
11th sample, it is also the hardest case because the luminance
values are relatively low in most regions. A black sedan with
a roof window was tested, and the results of the estimated key
feature points and the identified component regions are shown
in Fig. 37(a) and (b), respectively.

In the 12th sample, a white van with roof windows was
tested; the results of the estimated key feature points and the
identified component regions are shown in Fig. 38(a) and (b),
respectively. In the 13th sample, a silver blue wagon was tested,
and the results of the estimated key feature points and the
identified component regions are shown in Fig. 39(a) and (b),
respectively. However, the edge between the roof and side
windows cannot properly be computed because it locates on
the black handle on the roof. In the 14th sample, the results of
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TABLE 1V VI. FUTURE DEVELOPMENTS
COMPUTATIONAL-TIME REQUIREMENT OF THE PROPOSED METHOD
. . For the proposed methodology, the component regions are
Proposed step Computational time . . . .
- e identified by segmenting the boundaries based on camera pa-
Vehicle component identification 0.42 sec L K R

Multi-scale texture couriers construction 0.68 sec rameters and vanishing points. The exact contour of an indi-
Key feature points estimation 0.19 sec vidual component cannot be segmented for classification. For
Overall 1.29 sec instance, the bonnet of most vehicles may not be square, and

the estimated key feature points and the identified component
regions are shown in Fig. 40(a) and (b), respectively. The edge
between the roof and side windows does not properly locate,
but the edge of large vehicle can be estimated by using the 3-D
cuboid model to calculate the length between vertices V5 and
V-, as mentioned in [9].

Finally, the error rates of all 200 cases based on the number
of pixels of the reference component regions are statistically
shown in Fig. 41. The error rates of components of regions
RRr, Rw, R, Rc, Rs, and Rp are found to be 6.7%, 7.6%,
4.9%, 6.3%, 12.6%, and 2.6%, respectively. The error rates of
windscreen and side windows region are the highest as there
are some undesired features around the windscreen like the
stickers on the windscreen or the water-resistant plastic on side
windows, etc., which affect the accuracy of the results.

The computational time of the three major steps of the
proposed method is depicted in Table IV. It was imple-
mented in MATLAB on a Pentium III 800-MHz platform,
and the computational time of each step was monitored by
MATLAB. The multiscale-textural-courier-construction step is
the slowest among the three steps, whereas the feature-point-
estimation step is the fastest. This is not surprising, as the
former involves the decomposition of vehicle mask into a
multiscale region in order to generate textural couriers, which
is quite time-consuming. However, this delay is acceptable,
as the overall computational time is only slightly more than
1 s/image. As such, the proposed method is computationally
feasible.

therefore, one of the possible solution is to track the gradient
features of the individual component region to outline the exact
contour.

The other possible development is to recover the 3-D in-
formation of a vehicle from the displacements of the key
feature points between consecutive images. By utilizing the
property that these key feature points at different heights on the
same vehicle would differently displace in the image, the 3-D
coordinates of these feature points can be estimated using their
motion vectors. As a result, this 3-D vehicle shape can provide
imperative information for analyzing traffic scenes.

VII. CONCLUSION

In this paper, we have presented a novel scale-space method
for identifying vehicle components. In the proposed method,
the key feature points of the vehicle have been described
as symbolic features in streamlined vehicles; therefore, the
proposed method is fundamentally different from the majority
of existing model-based algorithms. Based on the topologi-
cal structure of multiscale textural couriers, we are able to
determine the regions that are homogenous in texture from
which vehicle components can be identified. A set of algorithms
has been described and compared in this paper to locate the
symbolic features. Successful results have been obtained with
a variety of traffic scenes and streamlined vehicles. The use of
a priori knowledge about the scene and the objects has been
shown to be the key to the success of the novel algorithms.
Used in conjunction with the textural difference, vehicle com-
ponents can be differentiated. With this vehicle-component
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representation in hand, further identification of vehicles can be
made. The current paper has demonstrated the efficiency and
robustness of context-based computer vision.

REFERENCES

[1] R. P. Avery, Y. Wang, and G. S. Rutherford, “Length-based vehicle clas-
sification using images from uncalibrated video cameras,” in Proc. IEEE
Conf. Intell. Transp. Syst., Oct. 2004, pp. 737-742.

[2] C.J. Chen, C. C. Chiu, B. F. Wu, S. P. Lin, and C. D. Huang, “The moving
object segmentation approach to vehicle extraction,” in Proc. IEEE Int.
Conf. Netw., Sens. Control, Mar. 2004, vol. 1, pp. 19-23.

[3] J. M. Collado, C. Hilario, A. de la Escalera, and J. M. Armingol, “Model
based vehicle detection for intelligent vehicles,” in Proc. IEEE Intell. Veh.
Symp., Jun. 2004, pp. 572-577.

[4] G.S. K. Fung, N. H. C. Yung, and G. K. H. Pang, “Vehicle shape approx-
imation from motion for visual traffic surveillance,” in Proc. IEEE Conf.
Intell. Transp. Syst., Aug. 2001, pp. 608-613.

[5]1 G. S. K. Fung, N. H. C. Yung, G. K. H. Pang, and A. H. S. Lai, “Camera

calibration from road lane markings,” Opt. Eng., vol. 42, no. 10, pp. 2967—

2977, Oct. 2003.

S. Gupte, O. Masoud, and N. P. Papanikolopoulos, “Vision-based vehi-

cle classification,” in Proc. IEEE Conf. Intell. Transp. Syst., Oct. 2000,

pp. 46-51.

S. Kamijo and M. Sakauchi, “Segmentation of vehicles and pedestrians in

traffic scene by spatio-temporal Markov random field model,” in Proc.

IEEE Int. Conf. Acoust., Speech, Signal Process., Apr. 2003, vol. 3,

pp- 361-364.

[8] N. K. Kanhere, S. J. Pundlik, and S. T. Birchfield, “Vehicle segmentation
and tracking from a low-angle off-axis camera,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recog., Jun. 2005, vol. 2, pp. 1152-1157.

[9]1 A.H.S.Lai,G.S. K. Fung, and N. H. C. Yung, “Vehicle type classification
from visual-based dimension estimation,” in Proc. IEEE Conf. Intell.
Transp. Syst., Aug. 2001, pp. 203-208.

[10] A.H.S.Laiand N. H. C. Yung, “A fast and accurate scoreboard algorithm
for estimating stationary backgrounds in an image sequence,” in Proc.
IEEE Int. Symp. Circuits Syst., May 1998, vol. 4, pp. 241-244.

[11] W. W. L. Lam, C. C. C. Pang, and N. H. C. Yung, “A highly accurate
texture-based vehicle segmentation method,” Opt. Eng., vol. 43, no. 3,
pp. 591-603, Mar. 2004.

[12] W. W. L. Lam, C. C. C. Pang, and N. H. C. Yung, “Multi-scale space ve-
hicle component identification,” in Proc. IEEE Int. Conf. Image Process.,
Oct. 2004, vol. 2, pp. 925-928.

[13] P. Li, L. Ding, and J. Liu, “A video-based traffic information extraction
system,” in Proc. IEEE Intell. Veh. Symp., Jun. 2003, pp. 528-532.

[14] C. C. C. Pang, W. W. L. Lam, and N. H. C. Yung, “A novel method for
resolving vehicle occlusion in a monocular traffic image sequence,” IEEE
Trans. Intell. Transp. Syst., vol. 5, no. 3, pp. 129-141, Sep. 2004.

[15] S. Pumrin and D. J. Dailey, “Vehicle image classification via
expectation-maximization algorithm,” in Proc. Int. Symp. Circuits Syst.,
May 2003, vol. 2, pp. 468—471.

[16] O. Sidla, L. Paletta, Y. Lypetskyy, and C. Janner, “Vehicle recognition for
highway lane survey,” in Proc. IEEE Conf. Intell. Transp. Syst., Oct. 2004,
pp- 531-536.

[17] J. C. Tai and K. T. Song, “Background segmentation and its application
to traffic monitoring using modified histogram,” in Proc. IEEE Int. Conf.
Netw., Sens. Control, Mar. 2004, vol. 1, pp. 13-18.

[18] T. N. Tan and K. D. Baker, “Efficient image gradient based vehicle lo-
calization,” IEEE Trans. Image Process., vol. 9, no. 8, pp. 1343-1356,
Aug. 2000.

[19] W. Wei, Q. S. Zhang, and M. Wang, “A method of vehicle classification
using models and neural networks,” in Proc. IEEE Conf. Veh. Technol.,
May 2001, pp. 3022-3026.

[20] L. Xie, G.Zhu, Y. Wang, H. Xu, and Z. Zhang, “Robust vehicles extraction
in a video-based intelligent transportation systems,” in Proc. IEEE Int.
Conf. Commun., Circuits Syst., May 2005, vol. 2, p. 890.

[21] S. Xuefeng and R. Nevatia, “A model-based vehicle segmentation method
for tracking,” in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2005, vol. 2,
pp- 1124-1131.

[22] A. Yoneyama, C. H. Yeh, and C. J. Kuo, “Moving cast shadow elimination
for robust vehicle extraction based on 2D joint vehicle/shadow models,” in
Proc. IEEE Conf. Advanced Video Signal Based Surveillance, Jul. 2003,
pp. 229-236.

[23] N. H. C. Yung and A. H. S. Lai, “Detection of vehicle occlusion using a
generalized deformable model,” in Proc. IEEE Int. Symp. Circuits Syst.,
May 1998, vol. 4, pp. 154-157.

[6

[}

[7

—

[24] X.Zhuang, “Vehicle detection and segmentation in dynamic traffic image
sequences with scale-rate,” in Proc. IEEE Conf. Intell. Transp. Syst.,
Oct. 2004, pp. 570-574.

William Wai Leung Lam received the B.Eng.
degree in electrical engineering from McMaster Uni-
versity, Hamilton, ON, Canada, and the M.Phil.
degree in electrical and electronic engineering from
Hong Kong University of Science and Technology,
Hong Kong. He is currently working toward the
Ph.D. degree with the Laboratory for Intelligent
Transportation Systems Research, Department of
Electrical and Electronic Engineering, University of
Hong Kong.

His research interests include computer vision,
intelligent transportation systems, and computer networks.

Clement Chun Cheong Pang (S’04-M’07) re-
ceived the B.Eng. and M.Eng. degrees in elec-
trical and computer engineering from McMaster
University, Hamilton, ON, Canada, in 1999 and
2001, respectively, and the Ph.D. degree in electrical
and electronic engineering from the University of
Hong Kong (HKU), Hong Kong, in 2005.

He is currently a Senior Research Assistant with
the Laboratory for Intelligent Transportation Sys-
tems Research, Department of Electrical and Elec-
tronic Engineering, HKU, and is currently working
toward a unified image algebraic model for outdoor visual traffic surveillance.
His research interests include the investigation of statistical models in computer
vision, as well as the application of statistical models in railway signaling and
communications.

Nelson Hon Ching Yung (S’82-M’85-SM’96) re-
ceived the B.Sc. and Ph.D. degrees from the Uni-
versity of Newcastle Upon Tyne, Newcastle Upon
Tyne, U.K.

From 1985 to 1990, he was a Lecturer with the
University of Newcastle Upon Tyne. From 1990
to 1993, he was a Senior Research Scientist with
the Department of Defence, Canberra, Australia. In
late 1993, he joined the University of Hong Kong
(HKU), Hong Kong, as an Associate Professor. He
leads a research team in digital image processing
and intelligent transportation systems. He is the founding Director of the
Laboratory for Intelligent Transportation Systems Research, Department of
Electrical and Electronic Engineering, HKU, and is also the Deputy Director
of HKU’s Institute of Transport Studies. He has coauthored five books and
book chapters and has published more than 130 journal and conference papers
in the areas of digital image processing, parallel algorithms, visual traffic
surveillance, autonomous vehicle navigation, and learning algorithms. He is the
holder of one U.S. patent and successfully transferred his research to a spin-
off technology company. He regularly delivers talks/seminars to government
units, professional institutions, associations and commercial companies, and
gives interviews to local press regarding his research. He acts as a consultant to
a number of local and international companies. He regularly serves as an expert
witness for the courts of the HKSAR.

Dr. Yung is a member of the Hong Kong Institution of Engineers and the
Institution of Electrical Engineers. He is a Chartered Electrical Engineer. He
serves as a Reviewer for the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS—PART C, CASVT, Vehicular Technology, Signal Processing,
The International Society for Optical Engineers (SPIE) Optical Engineering,
SPIE Journal of Electronic Imaging, HKIE Proceedings, Microprocessors
and Microsystems, and Robotics and Autonomous Systems Journal. He was a
member of the Advisory Panel of the ITS Strategy Review and the Transport
Department, HKSAR; the Regional Secretary of the IEEE Asia-Pacific region,
a Council Member and the Chairman of Standards Committee of ITS-HK;
and the Chair of Computer Division of the International Institute for Critical
Infrastructures. He was a Croucher Scholar, and his team received the Silver
Award from the Hong Kong Electronic Industry Association for Outstanding
Innovation and Technology Product (2000) for the Mobile and Online Vending
EnableR (MOVER) solution. His biography has been published in Marquis’
Who’s Who in the World since 1998 and in Who’s Who in Asia.

-
i

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 5, 2009 at 03:49 from IEEE Xplore. Restrictions apply.



