Image Noise Induced Errors in Camera Positioning

Graziano Chesi, Senior Member, IEEE, and Y.S. Hung, Senior Member, IEEE

Abstract—The problem of evaluating worst-case camera positioning error induced by unknown-but-bounded (UBB) image noise for a given object-camera configuration is considered. Specifically, it is shown that upper bounds to the rotation and translation worst-case error for a certain unknown-but-bounded (UBB) image noise intensity can be obtained through convex optimizations. These upper bounds, contrary to lower bounds provided by standard optimization tools, allow one to design robust visual servo systems.

Index Terms—Visual servoing, image noise, positioning accuracy, convex optimization.

1 INTRODUCTION

A fundamental problem in robotics consists of positioning a six degrees of freedom (dof) end-effector with respect to an object. An emerging approach to deal with this problem consists of using the view of a set of cameras as feedback in a control system. The motivation is to exploit simultaneously the benefits of closed-loop control and visual sensor to improve positioning accuracy and robustness. Typically, one camera mounted on the robot end-effector is used, in the so-called “eye-in-hand” configuration. The approach can be described as follows: First, the camera is located in a desired position with respect to the object. The view of the camera in this position, called desired view, is hence stored. Then, the camera is moved to any other unknown position of the scene. The target is to reposition the camera in the desired position by exploiting the difference between the actual view of the camera, called current view, and the desired view. This approach is known in the literature as teaching-by-showing.

Several methods have been developed to position the camera in the teaching-by-showing approach (see, for example, [8]). The classic methods are image-based visual servoing, position-based visual servoing, and 2 1/2D visual servoing (see [15], [17], [11], respectively). Then, other visual servoing methods are based on partitioning strategies [7], [5], [14], navigation functions [6], path-planning techniques [18], [12], transformations invariant with respect to the intrinsic parameters [10], image moments [16], and generations of circular-like trajectories [4].

In all these methods, the target of positioning the camera is transformed into the target of matching the desired view with the current view. Therefore, the accuracy of the camera positioning is strongly affected by image noise (an analysis of the effect of image noise on the control law of position-based visual servoing has been proposed in [9]). Clearly, it would be useful to quantify the errors induced by the image noise on the camera positioning. However, such a quantification amounts to solving a nonconvex maximization problem, which is very hard to solve due to the presence of local maxima that prevent one from establishing the worst-case positioning error.

In this paper, some new conditions to evaluate these errors for a given object-camera configuration are proposed through convex optimizations. Specifically, it is shown that upper bounds to the rotation and translation worst-case error for a certain unknown-but-bounded (UBB) image noise intensity can be obtained through eigenvalue problems (EVPs) which are convex optimizations constrained by linear matrix inequalities (LMIs). This is achieved, first, by parameterizing the rotation matrix through the Cayley parameter, and second, by introducing suitable polynomial relaxations. The advantage of the proposed technique with respect to standard optimization tools for solving the problem is obvious: While these tools provide lower bounds only of the worst-case error due to the presence of local maxima, the proposed technique provides upper bounds. It is clear that, in order to realize a robust visual servo system, upper bounds of the worst-case error are required.

The paper is organized as follows: Section 2 introduces the problem formulation. Section 3 presents the proposed technique to compute upper bounds of the worst-case error. Section 4 provides an illustrative example. Finally, Section 5 concludes with some final remarks.

2 PROBLEM FORMULATION

The notation is as follows: \(L_1 \) is the identity matrix \(n \times n \), \(0_n \) the null vector \(n \times 1 \), \(e_i \) the \(i \)th column of \(L_3 = SO(3) \) the set of all \(3 \times 3 \) rotation matrices, \([v] \in \mathbb{R}^{3 \times 1} \) the skew-symmetric matrix of \(v \in \mathbb{R}^3 \), and \(\|w\| \) (respectively, \(\|w\|_\infty \)) the euclidean (respectively, infinity) norm of vector \(w \).

Let \(F^* \) be the absolute reference frame and the desired camera frame. The \(i \)th 3D point \(q_i = [x_i; y_i; z_i] \) projects on \(F^* \) at the point \(m_i \) defined by \(d_i m_i = 1 q_i + 0_n \), where \(d_i \) is the depth with respect to \(F^* \). Let \(F \) be the current camera frame and let \(R \) and \(t \) be, respectively, the rotation and translation of \(F \) with respect to \(F^* \). The 3D point \(q_i \) projects on \(F \) at the point \(m_i \) defined by \(d_i m_i = R q_i + t \), where \(d_i \) is the depth with respect to \(F \). The frame points \(m_i \) and \(m_i \) project on the camera image plane at points \(p_i \) and \(p_i \), respectively, where \(K \) is the upper-triangular intrinsic parameters matrix. The points \(p_i = [p_{i x}; p_{i y}; 1] \) and \(p_i = [p_{i x}; p_{i y}; 1] \), \(i = 1, \ldots, n \), are gathered in the vector \(p = [p_{1 x}; p_{1 y}; \ldots; p_{n x}; p_{n y} ; 1] \) and \(p = [p_{1 x}; p_{1 y}; \ldots; p_{n x}; p_{n y} ; 1] \).

Fig. 1 illustrates the teaching-by-showing approach in the absence of image noise: The camera is first located in the desired position (Figs. 1a and 1b), then moved to any other position (Figs. 1c and 1d), then the visual servoing steers the camera from the current position to the desired position by exploiting the current and desired view of the object (Figs. 1e and 1f), and, finally, the camera motion ends when the current view matches the desired view (Figs. 1g and 1h).

However, in the presence of image noise as in real cases, the current view may never match the desired view, and even in the case of perfect matching, perfect positioning is not ensured. In fact, let \(\hat{p} \) and \(\hat{p} \) be the estimates of \(p \) and \(p \) affected by image noise, and

\[
\begin{align*}
\hat{p} &= p + n, \\
\hat{p} &= p + n,
\end{align*}
\]

where \(n \) and \(n \) are the UBB image noise vectors affecting the acquisition of the desired and current view respectively, and \(\delta_n \) denotes the noise intensity (which includes image quantization, lighting, features extraction, etc.). Then, it clearly follows that

\[
\|p - \hat{p}\|_\infty < \delta_n \quad \text{guarantees only} \quad \|p - \hat{p}\|_\infty < \delta_n + 2\delta_n.
\]
worst-case positioning errors for a given object-camera configuration, upper bounds of the rotation angle of R in the exponential coordinates, i.e., R = e[0a], for a rotation axis ∥u∥ ∈ IR3 with ∥u∥ = 1.

Let us observe that eR and eT depend on the number n of image points since, by adding image points keeping δ constant, one reduces the set of feasible R, t in the optimizations (3) and (4).

3 Upper Bounds Computation

The first step to derive convex conditions consists of parameterizing the rotation matrix through the Cayley parameter [13]. Specifically, let us introduce the function

\[\Gamma(a) = (I_3 - [a]_n)^{-1}(I_3 + [a]_n). \]

(5)

where a ∈ IR3 is the Cayley parameter. It turns out that Γ(a) ∈ SO(3) for all a. Moreover, for all R ∈ SO(3) there exists a (possibly unbounded) such that R = Γ(a). The Cayley parameter of R is related to the exponential coordinates of R by

\[\|a\| = \tan \frac{\theta}{2}. \]

(6)

\[\frac{a}{\|a\|} = u. \]

(7)

Therefore, (3) and (4) can be rewritten as

\[e_R = 2 \arctan \sqrt{\rho_R}, \]

(8)

\[\rho_R = \sup_{a \in IR^3} \sup_{x \in IR^3} \|p - p^*\| \]

(9)

and

\[e_T = \sqrt{\rho_T}, \]

(10)

\[\rho_T = \sup_{a \in IR^3} \sup_{x \in IR^3} \|t\| \]

(11)

Consider now the image constraint ∥p - p^*∥ < δ in the computations of ρR and ρT in (9), (10), and (11). For the ith point, we have

\[p_i - p_i^* = K - \frac{\Omega(a) q_i + t}{e_i^T (\Omega(a) q_i + t)} - K \frac{q_i}{e_i^T q_i}. \]

(12)

Let us observe that

\[\Omega(a) = \frac{\Omega(a)}{1 + \|a\|^2}. \]

(13)

where Ω(a) ∈ IR^{3×3} is a quadratic matrix function of a. Hence, (12) can be rewritten as

\[p_i - p_i^* = K - \frac{\Omega(a) q_i + b}{e_i^T (\Omega(a) q_i + b)} - K \frac{q_i}{e_i^T q_i}. \]

(14)
\begin{equation}
 b = \left(1 + \|a\|^2\right)t.
\end{equation}

Therefore, $\|p - p^*\|_\infty < \delta$ if and only if
\begin{equation}
 g_{i,j,k}(c) > 0 \quad \forall (i,j,k) \in \mathcal{I},
\end{equation}
where $c = [a; b] \in \mathbb{R}^2$, $g_{i,j,k}(c)$ is the polynomial
\begin{equation}
 g_{i,j,k}(c) = (-1)^k \left(e_i^T q_k e_i^T K(a) q_i + b\right) - c_i^T (\Omega(a) q_i + b) e_j^T K q_j \right) \right.
 + \left. k e_i^T q_k e_i^T (\Omega(a) q_i + b) \right)
\end{equation}
and
\begin{equation}
 \mathcal{I} = \{(i,j,k) : i = 1, \ldots, n, j = 1, 2, k = 0, 1\}.
\end{equation}

The second step of our approach consists of introducing suitable polynomial relaxations in order to solve the optimizations (9), (10), and (11). Let us define the polynomials
\begin{equation}
 \begin{aligned}
 f_R(c) &= \gamma - \|a\|^2 - \sum_{(i,j,k) \in \mathcal{I}} s_{i,j,k}(c) g_{i,j,k}(c), \\
 f_T(c) &= \left(1 + \|a\|^2\right)^2 \gamma - \|b\|^2 - \sum_{(i,j,k) \in \mathcal{I}} s_{i,j,k}(c) g_{i,j,k}(c),
 \end{aligned}
\end{equation}
where $\gamma \in \mathbb{R}$ is an auxiliary scalar, and $s_{i,j,k}(c)$ are auxiliary polynomials. Let $2m_f \gamma$ (respectively, $2m_f \gamma$) be the degree of $f_R(c)$ and $f_T(c)$ (respectively, $s_{i,j,k}(c)$), and let c^{m_i} be a vector containing all monomials of degree less than or equal to m in the elements of variable c. It turns out from combinatorial mathematics that the dimension of c^{m_i} is
\begin{equation}
 \sigma(m) = \frac{(m + 6)!}{(m!6)!}
\end{equation}
Let us express the above polynomials as
\begin{equation}
 \begin{cases}
 f_R(c) = c^{m_i} F_R c^{m_i}, \\
 f_T(c) = c^{m_i} F_T c^{m_i}, \\
 s_{i,j,k}(c) = c^{m_i} S_{i,j,k} c^{m_i},
 \end{cases}
\end{equation}
where F_R, F_T, and $S_{i,j,k}$ are any symmetric matrices of suitable dimensions satisfying (21). Finally, let $L(\alpha)$ be any linear parametrization of the linear set
\begin{equation}
 L = \{ L = L' : c^{m_i} L c^{m_i} = 0 \forall c \},
\end{equation}
where α is a free vector.

The representation (21) is known as square matricial representation (SMR) and has been introduced in [3]. In [2], simple algorithms for the computation of SMR matrices as F_R, F_T, and $S_{i,j,k}$ as well as the function $L(\alpha)$ are provided, and it is shown that the dimension of α is
\begin{equation}
 \tau(m_f) = \frac{1}{2} \sigma(m_f)(\sigma(m_f) + 1) - \sigma(2m_f).
\end{equation}
In practice, one first builds the vectors c^{m_i} and c^{m_i} by freely choosing any possible permutation of the $\sigma(m_f)$ monomials for c^{m_i} and any possible permutation of the $\sigma(m_i)$ monomials for c^{m_i}. Then, one introduces the free matrix variables $S_{i,j,k}$, hence defining the polynomials $s_{i,j,k}(c)$, $f_T(c)$, and $f_R(c)$. The next step is to build any possible matrix function F_T and any possible matrix function F_T (both affinely depending on $S_{i,j,k}$) through simple coefficients equalization of the equations in (21). Finally, one constructs the matrix function $L(\alpha)$ by selecting any possible parametrization of the linear set L.

The following theorem shows how upper bounds of ϵ_R and ϵ_T can be obtained through convex optimization.

Theorem 1. Let us define
\begin{equation}
 \epsilon_R = 2 \arctan \sqrt{\rho_R},
\end{equation}
where
\begin{equation}
 \rho_R = \min_{\gamma \in \mathbb{R}, S_{i,j,k}} \gamma
\end{equation}
subject to
\begin{equation}
 \begin{cases}
 F_R + L(\alpha) \geq 0, \\
 S_{i,j,k} \geq 0 \quad \forall (i,j,k) \in \mathcal{I}
 \end{cases}
\end{equation}
and
\begin{equation}
 \epsilon_T = \sqrt{\rho_T},
\end{equation}
where
\begin{equation}
 \rho_T = \min_{\gamma \in \mathbb{R}, S_{i,j,k}} \gamma
\end{equation}
subject to
\begin{equation}
 \begin{cases}
 F_T + L(\alpha) \geq 0, \\
 S_{i,j,k} \geq 0 \quad \forall (i,j,k) \in \mathcal{I}
 \end{cases}
\end{equation}
Then, $\epsilon_R \geq \epsilon_R$ and $\epsilon_T \geq \epsilon_T$.

Proof. Consider first ϵ_R and suppose that the inequality constraint in (25) is satisfied for some values of γ, α, and $S_{i,j,k}$. From $F_R + L(\alpha) \geq 0$, we obtain
that is, \(f_R(c) \) is nonnegative for all \(c \). Analogously, we have that \(s_{i,j,k}(c) \geq 0 \) for all \((i,j,k) \in I \). From the positivity of \(f_R(c) \), it follows that

\[
\gamma \geq \|a\|^2 + \sum_{(i,j,k) \in I} s_{i,j,k}(c) g_{i,j,k}(c),
\]

that is, \(\gamma \geq \|a\|^2 \) for any \(c \) satisfying the image constraint \(\|p - \hat{p}\|_\infty < \delta \). From (9), we conclude that \(\hat{e}_R \geq e_R \). Finally, we similarly prove that \(\hat{e}_T \geq e_T \) by observing that

\[
(1 + \|a\|^2)^2 \gamma - \|b\|^2 = \left(1 + \|a\|^2\right)^2 \left(\gamma - \|t\|^2\right).
\]

\(\square \)

Theorem 1 shows how upper bounds of \(e_R \) and \(e_T \) can be computed through the minimizations (25), (26), and (27) which are convex optimization constrained by linear matrix inequalities (LMIs) known as eigenvalue problem (EVP) for which powerful tools have been recently developed (see [1] for details about EVPs). Another advantage of the proposed technique is that Theorem 1 still provides upper bounds of \(e_R \) and \(e_T \) even by reducing the number of free parameters in the EVP. This can be useful in order to obtain lighter optimizations, clearly at the expense of the conservativeness.

4 Example

Fig. 2a shows the camera in the desired position observing three dices. The centers of the white large points in the “4,” “3,” and “2” sides are selected as features to position the camera in the teaching-by-showing approach. Fig. 2b shows the features in the desired view, each enclosed in a square of edge 2\(\delta \) indicating the global image error in the problems (3) and (4). The question we want to answer to is: Which is the worst-case camera positioning error we might commit for this object-camera configuration when the distance between current and desired view satisfies \(\|\hat{p} - \hat{p}\|_\infty < \delta \) or, in other words, \(\|p - p\|_\infty < \delta \) for \(\delta = \delta_0 + 2\delta_y^2 \)?

We have computed the upper bounds \(e_R \) and \(e_T \) in Theorem 1 by selecting auxiliary polynomials \(s_{i,j,k}(c) \) of degree \(2m_s = 2 \).
Figs. 3a and 3b show the results obtained for a range of values of δ in the case of full motion (six dof). Figs. 4a and 4b show the results obtained by considering that the camera has only three dof. In particular, Fig. 4a considers a camera able to rotate only, achieved by setting b = 0; from (17) to (25). Fig. 4b considers a camera able to translate only, achieved by similarly setting a = 0.

Table 1 shows the total number of scalar parameters involved in the optimizations (25), (26), and (27). Let us observe that, in the case of three dof, \(\sigma(n) = \binom{(m+3)}{(m+1)} \).

5 CONCLUSION

In order to design robust visual servo systems, upper bounds of the worst-case camera positioning error induced by image noise are required for a given object-camera configuration. While standard optimization tools provide lower bounds only due to the presence of local maxima, in this paper, it has been shown that upper bounds to the rotation and translation worst-case error for a certain UBB image noise intensity can be obtained through convex optimizations. These upper bounds allow one not only to quantify the maximum positioning error, but also to select optimal configurations for achieving better accuracy.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and the reviewers for their useful and constructive comments.

REFERENCES