<table>
<thead>
<tr>
<th>Title</th>
<th>VEGF: An essential mediator of both angiogenesis and endochondral ossification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Dai, J; Rabie, ABM</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal Of Dental Research, 2007, v. 86 n. 10, p. 937-950</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2007</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/57425</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
VEGF: an Essential Mediator of Both Angiogenesis and Endochondral Ossification
J. Dai and A.B.M. Rabie
J DENT RES 2007; 86; 937
DOI: 10.1177/154405910708601006

The online version of this article can be found at:
http://jdr.sagepub.com/cgi/content/abstract/86/10/937
VEGF: an Essential Mediator of Both Angiogenesis and Endochondral Ossification

J. Dai and A.B.M. Rabie*

The Biomedical and Tissue Engineering Group, Department of Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China; *corresponding author, rabie@hkusa.hku.hk

ABSTRACT

During bone growth, development, and remodeling, angiogenesis as well as osteogenesis are closely associated processes, sharing some essential mediators. Vascular endothelial growth factor (VEGF) was initially recognized as the best-characterized endothelial-specific growth factor, which increased vascular permeability and angiogenesis, and it is now apparent that this cytokine regulates multiple biological functions in the endochondral ossification of mandibular condylar growth, as well as long bone formation. The complexity of VEGF biology is paralleled by the emerging complexity of interactions between VEGF ligands and their receptors. This narrative review summarizes the family of VEGF-related molecules, including 7 mammalian members, namely, VEGF, placenta growth factor (PLGF), and VEGF-B, -C, -D, -E, and -F. The biological functions of VEGF are mediated by at least 3 corresponding receptors: VEGFR-1/Flt-1, VEGFR-2/Flk-1, VEGFR-3/Fli-4 and 2 co-receptors of neuropilin (NRP) and heparan sulfate proteoglycans (HSPGs). Current findings on endochondral ossification are also discussed, with emphasis on VEGF-A action in osteoblasts, chondroblasts, and chondroclasts/osteoclasts and regulatory mechanisms involving oxygen tension, and some growth factors and hormones. Furthermore, the therapeutic implications of recombinant VEGF-A protein therapy and VEGF-A gene therapy are evaluated. Abbreviations used: VEGF, Vascular endothelial growth factor; PLGF, placenta growth factor; NRP, neuropilin; HSPGs, heparan sulfate proteoglycans; FGF, fibroblast growth factor; TGF, transforming growth factor; HGF, hepatocyte growth factor; TNF, tumor necrosis factor; ECM, extracellular matrix; RTKs, receptor tyrosine kinases; ERK, extracellular signal kinases; HIF, hypoxia-inducible factor

INTRODUCTION

During embryogenesis, blood vessels are formed by two processes, vasculogenesis and angiogenesis. Vasculogenesis is the formation of new blood vessels involving de novo differentiation of endothelial cells from mesoderm-derived precursor cells (angioblasts) (Gonzalez-Crussi, 1971). In contrast, angiogenesis, termed 'neovascularization', is the formation of new blood vessels from a pre-existing vascular network, with continued expansion of a vascular tree in response to an increase in tissue mass (Risau, 1997; Carmeliet, 2005). Almost all tissues develop a functional circulatory system by sprouting or non-sprouting angiogenesis to form a primary capillary plexus. The metabolism and survival of normal tissue depend on the adequate supply of oxygen and nutrients from the vasculature. During adulthood, however, cells of most blood vessels are quiescent, except for those which respond to physiological processes such as wound healing, tissue remodeling, and the female reproductive cycle and pathological processes such as tumor expansion and metastasis (Folkman and Shing, 1992; Folkman, 1995). However, dysregulated and excessive vessel growth has a significant impact on health, and contributes to various diseases. Insufficient vessel growth or abnormal vessel regression causes stroke, Alzheimer's disease, amyotrophic lateral sclerosis, hypertension, osteoporosis, respiratory distress, and other disorders. In contrast, cancer, rheumatoid arthritis, psoriasis, and diabetic retinopathy are the best-known diseases resulting from excessive or abnormal angiogenesis (Carmellet, 2005).

The final event in endochondral ossification of bone growth and development is the replacement of the avascular cartilage template by highly vascularized bone tissue (Fig. 1). In this process, chondrocytes become hypertrophic and then produce a calcified cartilaginous extracellular matrix (ECM) and angiogenic stimulators, thus providing a target for capillary invasion and angiogenesis (Alini et al., 1996). The new vasculature supplies a conduit for the recruitment of the cell types involved in cartilage resorption and bone deposition, while providing the signals necessary for normal morphogenesis (Harper and Klagesbrun, 1999). Histological findings suggest that osteoblasts and osteoprogenitor cells always develop concomitantly with endothelial cells in the newly formed blood vessels at sites where new bone is formed (Deckers et al., 2000). Capillary endothelial cells provide microvasculature during bone remodeling (Erlebacher et al., 1995), and this vascular invasion is a prerequisite for bone formation (Guenther et al., 1986). Moreover, in the mandibular condyle, the terminal ends of the penetrating capillaries closely follow the outline of the previously eroded chondrocytic capsule, and the process of erosion is closely related to and dependent on osteoclastic activity (Durkin et al., 1973). Certainly, angiogenesis is of critical importance for the growth and development of long bones and the mandibular condyle, and these two biological events share a common mediator.

Angiogenesis is thought to depend on a delicate balance between endogenous stimulators and inhibitors (Polverini, 1995). Many
molecules have been implicated as positive regulators of angiogenesis, including members of the vascular endothelial growth factor (VEGF) family, fibroblast growth factor (FGF), transforming growth factor (TGF)-%, TGF-%, hepatocyte growth factor (HGF), tumor necrosis factor (TNF)-%, angiogenin, interleukin (IL)-8, and the angiopoietins (Folkman and Shing, 1992; Yancopoulos et al., 2000). Among these pro-angiogenic factors, VEGF, a homodimeric protein of 34 to 42 kDa, is a fundamental and potent regulator of normal and abnormal angiogenesis (Senger et al., 1993). It was first identified by Ferrara and Henzel (1989) as an endothelial-specific growth factor from bovine pituitary follicular cells, and is produced by many types of cells, including fibroblasts, smooth-muscle cells, hypertrophic chondrocytes, and osteoblasts (Gerber et al., 1999; Ferrara and Gerber, 2001; Gerber and Ferrara, 2003). Furthermore, VEGF-mediated angiogenesis is pivotal in growth of the long bones and the mandibular condyle (Gerber et al., 1999; Rabie and Hagg, 2002; Rabie et al., 2002a; Leung et al., 2004). Recent studies have shown that VEGF may act as an essential mediator during these processes and that it has multiple functions, not only in bone angiogenesis, but also in different aspects of bone development, including chondrocyte differentiation, osteoblast differentiation, and osteoclast recruitment (Zelzer et al., 2004; Zelzer and Olsen, 2005).

This review summarizes the ongoing efforts made in: (1) characterizing VEGF family members, especially VEGF-A, and their receptors; (2) investigating the regulatory system of VEGF-A expression; (3) exploring the multiple roles of VEGF-A in endochondral ossification of long bones, as well as in mandibular condylar growth; and (4) developing therapeutic applications for recombinant protein and gene therapy.

THE VEGF FAMILY AND ITS CHARACTERISTICS

VEGF is now understood to be one of a family of VEGFs that includes VEGF, placenta growth factor (PLGF), and VEGF-B, -C, -D, -E, and -F (Veikkola and Alitalo, 1999; Ferrara et al., 2003; Roy et al., 2006). They all share a common structure of 8 characteristically spaced cysteine residues in a VEGF homology domain.

VEGF-A

VEGF, generally referred to as VEGF-A, is a fundamental mediator of physiologic and pathophysiologic angiogenesis. It is also called vascular permeability factor (VPF) and is produced by cultured vascular smooth-muscle cells (Tischer et al., 1991). Structurally, VEGF-A is an antiparallel dimer that has receptor-binding sites at each pole of the dimer. The VEGF-A gene has been mapped to human chromosomes 6p21.3 (Vincenti et al., 1996), which can be alternatively spliced to generate at least 6 distinct isoforms of 121, 145, 165, 189, and 206 amino acids (termed VEGF-A121, VEGF-A145, VEGF-A165, VEGF-A189, and VEGF-A206, respectively); a variant of VEGF-A165, namely, VEGF-A165b, has also been identified (Tischer et al., 1991) (Fig. 2, Table 1). Murine VEGF-A is shorter than the corresponding human isoforms by 1 amino acid, and they are denoted VEGF-A120, VEGF-A144, VEGF-A164, and VEGF-A188 (Tamayose et al., 1996). The VEGF-A isoforms have distinct biological activities, such as differential interaction with heparan sulfate proteoglycans (HSPGs) and neuropilin (NRP). The amino acids that are encoded by exons 1-5 are conserved in all isoforms, but alternative splicing can occur in exons 6 and 7 (Houck et al., 1991).

VEGF-A121, the shortest splice form, is acidic and is more freely diffusible. It lacks exons 6 and 7, which encode the binding domains of HSPGs and NRPs. Consequently, VEGF-A121 does not bind either HSPGs or NRPs. The decreased retention of VEGF-A121 on the cell surface and in the ECM renders this isoform highly diffusible, which acts as a mitogenic and chemotactant for endothelial cells during angiogenesis and vasculogenesis (Houck et al., 1992).

VEGF-A145, an isoform lacking exons 6b and 7, appears in an intermediary manner, since it is secreted, but a significant segment remains bound to the cell surface and ECM (Ferrara and Davis-Smyth, 1997). VEGF-A145 binds to VEGFR-1, VEGFR-2, HSPG, and NRP-2, but not to NRP-1 (Poltorak et al., 1997; Gluzman-Poltorak et al., 2000). Binding to HSPG, VEGF-A145 was found to induce endothelial cell proliferation and in vivo angiogenesis (Poltorak et al., 1997). However, the
actual physiological roles of VEGF-A\textsubscript{145}'s affinity to NRP-2 remain unclear.

VEGF-A\textsubscript{165}, lacking exons 6a and 6b, is physiologically the most abundant isoform of VEGF-A (Tischer et al., 1991). It binds to all of the receptors, including VEGFR-1, VEGFR-2, HSPGs, NRP-1, and NRP-2. Moreover, the affinity to VEGFR-1 is 10-fold higher than that to VEGFR-2 (Waltenberger et al., 1994). VEGF-A\textsubscript{165} and VEGF-A\textsubscript{121} are highly expressed in muscle, brain, kidney, eye, and chondrocytes (Gengrinovitch et al., 1995). However, mice expressing only the VEGF-A\textsubscript{120} isoform (VEGF-A\textsubscript{120}\textsubscript{120}) presented with delayed recruitment of blood vessels into the perichondrium and delayed invasion of vessels into the primary ossification center (Zelzer et al., 2002), whereas VEGF-A\textsubscript{164/164} mice showed normal vascular development. In contrast, VEGF-A\textsubscript{123} was reported to have 10- to 100-fold less endothelial cell mitogenic activity than VEGF-A\textsubscript{165} due to lack of a HSPG-binding basic region (Gitay-Goren et al., 1992). Moreover, when chondrocytes are cultured in low oxygen conditions, they secrete VEGF-A\textsubscript{165}. Both VEGF-A\textsubscript{165} and VEGF-A\textsubscript{121} might promote angiogenesis contributing to long bone development, cause permeabilization of vascular endothelial cells, and stimulate osteostegogenesis for tooth eruption (Ng et al., 2001; Wise and Yao, 2003; Cramer et al., 2004). The splice variant VEGF-A\textsubscript{165b} contains the same quantity of amino acids as VEGF-A\textsubscript{165} except for 6 amino acids in the C-terminal region, denoted exon 9 (Bates et al., 2002; Woolard et al., 2004). The C-terminal is critical for mitogenic signaling; hence, the differentiation in the VEGF-A\textsubscript{165b} variant is likely to affect its biological activity (Cui et al., 2004; Woolard et al., 2004; Byrne et al., 2005). Although VEGF-A\textsubscript{165} can bind VEGFR-2, its binding leads to neither phosphorylation of the receptor nor activation of the downstream signal pathway. VEGF-A\textsubscript{165b} is an endogenously inhibitory form of VEGF-A and reduces VEGF-A-activated proliferation and migration of endothelial cells (Cui et al., 2004; Woolard et al., 2004).

VEGF-A\textsubscript{189} and VEGF-A\textsubscript{206} contain all the exons. VEGF-A\textsubscript{189} has an insertion of 24 amino acids that are highly enriched in basic residues, and VEGF-A\textsubscript{206} has an additional insertion of 17 amino acids. These features mean that VEGF-A\textsubscript{189} and VEGF-A\textsubscript{206} are not secreted from cell surfaces, but are tightly bound to HSPGs and NRP, allowing for the sequestration of VEGF-A\textsubscript{189} and VEGF-A\textsubscript{206} in the ECM and on cell surfaces (Houck et al., 1992; Park et al., 2003). VEGF-A\textsubscript{189} is usually present in low amounts, and VEGF-A\textsubscript{206} expression is restricted to embryonic tissues (Ferrara and Davis-Smyth, 1997). Hence, they are less active than other isoforms secreted in vivo, such as VEGF-A\textsubscript{121}, VEGF-A\textsubscript{145}, and VEGF-A\textsubscript{165}. Protease cleavage of matrix-bound VEGF-A\textsubscript{189} allows for the release of an active, freely diffusible 110-amino-acid fragment (Lee et al., 2005). A recent study demonstrated that VEGF-A\textsubscript{189} could promote endothelial cell proliferation and migration in vivo, and angiogenesis in the Matrigel plug assay in vivo (Herve et al., 2005). However, VEGF-A\textsubscript{188/188} mice showed dwarfism, impaired development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to defective vasculization surrounding the epiphysis, leading to ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition, an in vitro study showed that the VEGF-A\textsubscript{188} isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia (Maes et al., 2004).

PLGF

The first member of the VEGF family to be discovered, PLGF, shares 53% identity with the platelet-derived growth factor (PDGF)-like region of VEGF (Nissen et al., 1998). The human PLGF gene has been mapped to chromosome 14q24 (Mattei et al., 1996). PLGF is anticipated to have 149 amino acids and is encoded by 7 exons that span 800 kb (Roy et al., 2006). By alternative splicing, 4 forms of PLGF protein are generated: PLGF-1, PLGF-2, PLGF-3, and PLGF-4 (Maglione et al., 2000). Only PLGF-2 is capable of binding heparin (Hauser and Weich, 1993). Overexpression of PLGF-2 in perivascular tissue raises VEGF-A\textsubscript{165} and VEGF-A\textsubscript{121} levels and produces significant angiogenesis (Roy et al., 2006). PLGF has a powerful chemotactic effect on monocytes, since injection of PLGF protein and adenovirus-mediated PLGF gene transfer increases macrophage accumulation (Roy et al., 2005). Furthermore, PLGF deficiency impairs proliferation and differentiation of osteochondroprogenitors during bone repair (Maes et al., 2006).

VEGF-B

VEGF-B, which is also called VEGF-related factor (VRF), encodes 188 amino acids, consists of 8 exons and 6 introns, and is located on chromosome 11q13 (Paavonen et al., 1996). VEGF-B transcripts can be alternatively spliced into two different variants encoding proteins VEGF-B\textsubscript{167} and VEGF-B\textsubscript{116} (Li et al., 2001). The promoter region of VEGF-B is

Table 1. Properties of the VEGF-A Isoforms

<table>
<thead>
<tr>
<th>Isoforms</th>
<th>Structure</th>
<th>Binding Ability</th>
<th>Functions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF-A\text sub{121}</td>
<td>Lacks exons 6 & 7</td>
<td>VEGFR-1, 2</td>
<td>▲ EC proliferation, migration, osteostegogenesis</td>
<td>Houck et al., 1992; Wise and Yao, 2003</td>
</tr>
<tr>
<td>VEGF-A\text sub{145}</td>
<td>Lacks exons 6b & 7</td>
<td>VEGFR-1, 2, HSPG, NRP-2</td>
<td>▲ EC proliferation</td>
<td>Poltorak et al., 1997</td>
</tr>
<tr>
<td>VEGF-A\text sub{165}</td>
<td>Lacks exons 6a & 6b</td>
<td>VEGFR-1, 2, HSPG, NRP-1, 2</td>
<td>▲ EC proliferation, permeabilization, osteostegogenesis</td>
<td>Wise and Yao, 2003; Cramer et al., 2004</td>
</tr>
<tr>
<td>VEGF-A\text sub{165b}</td>
<td>Lacks exons 6a & 6b</td>
<td>VEGFR-1, 2, HSPG, NRP-1, 2</td>
<td>▼ EC proliferation, migration</td>
<td>Cui et al., 2004</td>
</tr>
<tr>
<td>VEGF-A\text sub{189}</td>
<td>Contains all the exons</td>
<td>HSPG, NRP-1, 2</td>
<td>▲ EC proliferation, migration</td>
<td>Herve et al., 2005</td>
</tr>
<tr>
<td>VEGF-A\text sub{206}</td>
<td>Contains all the exons</td>
<td>HSPG, NRP-1, 2</td>
<td>ND</td>
<td>Ferrara and Davis-Smyth, 1997</td>
</tr>
</tbody>
</table>

▲ induced, ▼ inhibited. EC, endothelial cells; ND, not determined.

Downloaded from http://jdr.sagepub.com at Pofulam Lib on April 28, 2009
similar to that of VEGF-A, in that both promoters are associated with a CpG island and contain transcription-factor-binding sites for Sp1 and AP-2 (Silins et al., 1997). However, the VEGF-B promoter includes Egr-1 sites, not hypoxia-inductive factor-1 and AP-1 sites. Consequently, stimuli such as hypoxia, which can regulate VEGF-A expression, appear to have no effect on the expression of VEGF-B (Enholm et al., 1997; Roy et al., 2006). VEGF-B is highly abundant in the heart, skeletal muscle, and pancreas and is required in vascularization of skeletal muscle (Enholm et al., 1997). Silvestre et al. (2003) demonstrated that VEGF-B, partly through its receptor VEGFR-1, induces angiogenesis associated with an activation of Akt and eNOS-related pathways.

VEGF-C

VEGF-C, which is also referred to as VEGF-related protein (VRP), is located on chromosome 4q34 (Paavonen et al., 1996). The VEGF-C gene contains more than 40 kb of genomic DNA and consists of 7 exons (Roy et al., 2006). VEGF-C is a secreted protein that consists of 399 amino acids and was identified as a ligand for the tyrosine kinase receptor VEGFR-3, which is associated with the lymphatic vasculature (Karkkainen et al., 2004). Structurally, VEGF-C shares approximately 30% sequence homology with the central core of VEGF-A. In vivo, VEGF-C can stimulate angiogenesis in a rabbit ischemic hind-limb model, rabbit cornea assay, and early chick chorio-allantoic membrane. In vitro, VEGF-C can stimulate endothelial cell proliferation and migration, but it is less potent than VEGF-A. Gene transfer of VEGF-C produced moderate angiogenesis in rabbit skeletal as well as perivascular tissue (Bhardwaj et al., 2003). VEGF-C is overexpressed in rheumatoid arthritis (RA) synovial tissues, when compared with osteoarthritis (OA) or normal synovial tissues (Wauke et al., 2002). In addition, tumor necrosis factor (TNF)-α has been recently identified to induce VEGF-C expression significantly in rheumatoid synoviocytes in a dose-dependent manner. It suggests that VEGF-C may be indispensable for the pathogenesis of RA through contributing to local lymphangiogenesis and tumor angiogenesis (Cha et al., 2007).

VEGF-D

VEGF-D, also called c-fos-induced growth factor (FIGF), can activate the receptors VEGFR-2 and VEGFR-3 in humans, but only VEGFR-3 in mice (Baldwin et al., 2001). It is expressed in many adult tissues, including the limb buds, teeth, liver, and heart as well as the lung and kidney mesenchyme and periosteum of the vertebral column (Avantaggiato et al., 1998). The human VEGF-D gene is 2.0 kb in size and is located on chromosome Xp22.31 (Yamada et al., 1997). VEGF-D is mitogenic for endothelial cells in vitro (Bhardwaj et al., 2003), angiogenic in vivo and in vitro (Marconcini et al., 1999), and lymphangiogenic in tumors

Figure 3. Schematic representation of the VEGF receptors and their ligands. The tyrosine kinase receptors (VEGFR-1/Flt-1, VEGFR-2/KDR/Flk-1, VEGFR-3/Flt-4) are organized into 7 extracellular immunoglobulin (Ig)-like domains. VEGF binding has been localized to the second and third Ig-like domains. The fourth Ig-like domains are thought to interact directly with each other in a ligand-induced receptor dimer. In VEGFR-3, the fifth Ig domain is replaced by a disulfide bridge. The extracellular domain is followed by a single transmembrane region, a split tyrosine-kinase domain. The interaction domain is followed by a single transmembrane region, a split tyrosine-kinase domain. The interaction region is followed by a single transmembrane region, a split tyrosine-kinase domain. The interaction region is followed by a single transmembrane region, a split tyrosine-kinase domain. The interaction region is followed by a single transmembrane region, a split tyrosine-kinase domain.
VEGF RECEPTORS

The main receptors involved in VEGF signal transduction are the PDGF receptor subfamily of receptor tyrosine kinases (RTKs)—namely, VEGFR-1, VEGFR-2, VEGFR-3—as well as co-receptors, such as NRP-1 and -2 and HSPGs (Ferrara et al., 2003) (Fig. 3). More than one type of VEGF receptor contributes to the biological responses to VEGF, thereby ensuring balanced signaling.

VEGFR-1

VEGFR-1, or fms-like tyrosine kinase receptor 1 (flt-1), is a 180-kDa transmembrane protein that is considered to be integral to vascular maintenance and the recruitment of endothelial precursor cells during vasculogenesis (Shibuya, 2006). It binds to all the isoforms of VEGF-A, VEGF-B, and PLGF, and transduces the distinct biological responses (Park et al., 1994; Olofsson et al., 1998). Autiero et al. (2003) suggested that the mechanism underlying the different responses of VEGF and PLGF might be the induction of different phosphorylation patterns in VEGFR-1. Another important feature of VEGFR-1 is that the soluble VEGFR-1 can function as a natural VEGF-A inhibitor (a decoy receptor). These unique characteristics of VEGFR1 suggest that it acts as both a negative regulator, via its ligand-binding domain mediated by VEGFR-2, and a positive regulator, via its tyrosine kinase (Gille et al., 2001). Moreover, VEGFR1 might be influenced through interaction with VEGFR-2. VEGFR-1 binds embryonic stem cells resulted in the increased differentiation of endothelial cells, but assembly of these cells into abnormal vascular channels mediated by the increased phosphorylation of VEGFR-2 (Fong et al., 1995; Roberts et al., 2004). In contrast, VEGF-mediated proliferation of endothelial cells can be suppressed by VEGFR-1, and this effect is dependent on PI3K (Zeng et al., 2001). More recently, mice that were deficient in flt-1 signaling (op/opFlt1TK-/-) were shown to have very depleted numbers of osteoclasts and osteoblasts, and, consequently, also a deficiency in bone marrow cavity formation. The fibrous tissue gradually filled in the narrow bone marrow cavity, resulting in severe marrow hypoplasia (Niida et al., 2005). These findings suggested that VEGFR-1 signaling is critical for osteoblast activity during bone formation through participation in osteoclastogenesis, as well as in the maintenance of a bone marrow hematopoiesis-supportive microenvironment.

VEGFR-2

VEGFR-2, or kinase insert domain-containing receptor (KDR)/fetal liver kinase 1 (flk-1), is a 230-kDa glycoprotein that is thought to mediate almost all of the observed endothelial cell responses to VEGF (Neufeld et al., 1999). It binds to all the isoforms of VEGF-A, VEGF-C, VEGF-D, and VEGF-F, but not VEGF-B165 and PLGF (Ferrara and Davis-Smyth, 1997). VEGFR-2 is predominantly located on the surfaces of endothelial cells and is thought to initiate intracellular signal transduction, which is associated with the integrin-dependent migration of endothelial cells, since it can form a complex with integrin αVβ3 and the induction of endothelial cell proliferation, migration, and in vivo angiogenesis (Hutchings et al., 2003). It has been reported that VEGFR-2-mediated cell migration induced by VEGF-A165, but not by VEGF-A121, is strongly enhanced in the presence of NRP-1 receptors (Shraga-Heled et al., 2007). VEGFR-2 knockout mice showed severely impaired vasculogenesis and hematopoiesis in the embryo, leading to embryonic death (Shalaby et al., 1995). Moreover, expression of VEGFR-2 occurs in a differentiation-dependent manner and declines post-natally (Millauer et al., 1993). In contrast, the binding of VEGF to VEGFR-1 does not seem to result in the induction of cell proliferation, and it is believed that its role is mainly inhibitory (Shraga-Heled et al., 2007).

VEGFR-3

VEGFR-3 or flt-4, a 170-kDa glycosylated protein, is a receptor for VEGF-C and VEGF-D, but not for VEGF-A. It is required for the development of blood as well as lymphatic vessels and is thought to have a general function in blood vascularization during early development (Lohela et al., 2003); later, its role becomes restricted mostly to the development of the lymphatic vascular system (Dayoub et al., 2003). Furthermore, expression of VEGFR-3 has been reported to be higher in human osteoarthritic chondrocytes than in persons without arthritis (Shakibaie et al., 2003).

NRPs

NRPs were recently identified to be VEGF co-receptors and belong to a family of non-tyrosine kinase transmembrane receptors that have a small cytoplasmic domain and multiple extracellular domains (Soker et al., 1998). NRP-1 lacks an intracellular tyrosine kinase domain and therefore must act in conjunction with other receptors to mediate VEGF signaling. It can associate with both VEGFR-1 and VEGFR-2 by specifically binding VEGF-A165 and PLGF, VEGF-B, and VEGF-E, but not VEGF-A121 (Zelzer et al., 2001). NRP-2 also lacks a cytoplasmic signaling domain and can bind to VEGF-A165, VEGF-A145, and PLGF and can interact with VEGFR-1 (Gluzman-Poltorak et al., 2000, 2001). NRPs act as active mediators in immune responses, neuronal development, and angiogenesis (Klagsbrun et al., 2002). Deletion of the NRP-2 gene impairs formation of small lymphatic vessels, suggesting that NRP-2 may act as a co-receptor for VEGF-3 (Yuan et al., 2002). Both NRP-1 and NRP-2 can enhance VEGF-A121-induced phosphorylation of VEGF-2 and VEGF-A121-induced proliferation of endothelial cells. The enhancement of VEGF-A121 activity by NRP-1 has been reported to be accompanied by a significant increase in the binding affinity of VEGF-2 to VEGF-A121, and was not associated with the formation of new VEGF-2/NRP-1 complexes (Shraga-Heled et al., 2007). NRP-1 expression in cultured MC3T3-E1 osteoblasts was down-regulated in a differentiation-dependent manner and bound to VEGF-A165 (Deckers et al., 2000). Consistent with the in vitro studies, NRP1 is expressed in vivo by osteoblasts, but not osteocytes, in the metaphysis and trabeculae of growing mouse bones and embryonic chick bones (Harper et al., 2001). The overexpression of NRP-1 showed extra digits, suggesting that limb morphogenesis is very sensitive to exogenous neuropilin expression (Kitusakawa et al., 1995). In addition, the binding of semaphorin-3A (an axonal chemorepellent) to NRP-1 may compete with VEGF-A165 for an overlapping binding site on NRP-1, and may inhibit the migration of endothelial cells and the outgrowth of capillary tubes from rat aortic segments (Narazaki and Tosato, 2006). Thus, NRP-1 appears to be a novel regulator of osteoblast activity in development of the skeletal system, and semaphorin-3A might affect its affinity to VEGF-A165. However, the contribution of NRP-2 to bone development is still unclear.
VEGF-A121: The high-affinity binding to VEGF-A165 affects its signaling in transit from the surface of an adjacent cell (Cohen et al., 1995). Hypoxia-induced factor-1α (HIF-1α) binds to the 5′ consensus sequence in the VEGF-A promoter, termed the ‘hypoxia responsive element’, which in turn increases VEGF-A transcription (Madan and Curtin, 1993). Hypoxia-induced VEGF-A up-regulation is controlled at both the transcriptional and post-transcriptional levels (Dibbens et al., 1999). A study of human osteoblast-like MG63 cells revealed that transcriptional regulation of VEGF-A mRNA expression under hypoxic conditions is mediated through increased levels of the basic-helix-loop-helix transcription factor Hif-2α, but not Hif-1α (Akeno et al., 2001). The induction of VEGF-A by Hif-2α is likely to represent a physiologically relevant response to hypoxia in osteoblasts. However, HIF-1α-null chondrocytes were unable to maintain ATP levels in hypoxic microenvironments, indicating a fundamental requirement for HIF-1α in the regulation of chondrocyte metabolism, and hence vascularization during long-bone development (Pfander et al., 2003; Cramer et al., 2004).

Table 2. Regulation of VEGF Gene Expression

<table>
<thead>
<tr>
<th>Factors</th>
<th>Functions</th>
<th>Role in VEGF Expression</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIF1α</td>
<td>Hypoxic mediator and regulates chondrocyte metabolism</td>
<td>up-regulation</td>
<td>Dibbens et al., 1999</td>
</tr>
<tr>
<td>Cbfa1</td>
<td>Regulates osteoblast differentiation and chondrocyte maturation</td>
<td>up-regulation</td>
<td>Zelzer et al., 2001</td>
</tr>
<tr>
<td>BMPs</td>
<td>Regulate chondrocyte and osteoblast differentiation</td>
<td>up-regulation</td>
<td>Yeh and Lee, 1999</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>Regulates osteoblast differentiation</td>
<td>up-regulation</td>
<td>Spector et al., 2000</td>
</tr>
<tr>
<td>CTGF</td>
<td>Regulates chondrocyte proliferation and ECM production</td>
<td>up-regulation</td>
<td>Ivkovic et al., 2003</td>
</tr>
<tr>
<td>MMP-9</td>
<td>Regulates ECM degradation</td>
<td>up-regulation</td>
<td>Vu et al., 1998</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Regulates osteoclast recruitment and differentiation</td>
<td>up-regulation</td>
<td>Wise and Yao, 2003</td>
</tr>
</tbody>
</table>

HSPGs

HSPGs are transmembrane, glycosylphosphatidylinositol-anchored or secreted proteins that contain covalently linked heparan sulfate chains that modulate the activity of a large number of secreted signaling molecules. HSPGs might regulate the binding of VEGF-A165 to its receptors via an accessory low-affinity binding site; in this way, HSPGs promote VEGF-A165 signaling in transit from the surface of an adjacent cell (Houck et al., 1992; Selleck, 2006). Such ligand-receptor interactions stimulate VEGFR-2 turnover and cause a marked increase in duration and amplitude of the VEGFR signal (Jakobsson et al., 2006; Selleck, 2006). HSPGs also have profound effects on the bioactivity of VEGF-A165, but not VEGF-A121. The high-affinity binding to VEGF-A165 affects its diffusion, half-life, and interaction through VEGFR-2 (Larrivee and Karson, 2000; Stringer, 2006). HSPGs are considered to be both important co-receptors and important regulators of VEGF-A gradients. Exogenous heparin is known to inhibit both binding ability between VEGFR-2 and VEGF-A165 and autophosphorylation of VEGFR-2 induced by VEGF-A165, but it has no effect on the interaction of VEGFR-2 with VEGF-A121 (Tessler et al., 1994). In contrast, exogenous heparin significantly inhibits the affinity for VEGFR-1 with both VEGF-A165 and VEGF-A121 (Cohen et al., 1995). These observations suggest that the C-terminal region of VEGF-A165 is important in the interaction of cell-associated VEGFR-2, while heparin affects the activity role of VEGFR-1 independently of the heparin-binding ability of the ligands (Yamazaki and Morita, 2006).

REGULATION OF VEGF-A GENE EXPRESSION

Several mechanisms have been demonstrated to be involved in the regulation of VEGF expression, including hypoxia and several growth factors and hormones. An overview of the regulation factors appears in Table 2, and these will be discussed in the following sections.

Hypoxia

Oxygen plays a critical role, both in vitro and in vivo, in the regulation of VEGF-A expression. Hypoxic induction of VEGF-A appears to be a ubiquitous response, in which the 28-base consensus sequence in the 5′ VEGF promoter is augmented by a 3′ enhancer (Levy et al., 1995). Under hypoxic conditions, hypoxia-inducible factor-1α (HIF-1α) binds to the 5′ consensus sequence in the VEGF-A promoter, termed the ‘hypoxia responsive element’, which in turn increases VEGF-A transcription (Madan and Curtin, 1993). Hypoxia-induced VEGF-A up-regulation is controlled at both the transcriptional and post-transcriptional levels (Dibbens et al., 1999). A study of human osteoblast-like MG63 cells revealed that transcriptional regulation of VEGF-A mRNA expression under hypoxic conditions is mediated through increased levels of the basic-helix-loop-helix transcription factor Hif-2α, but not Hif-1α (Akeno et al., 2001). The induction of VEGF-A by Hif-2α is likely to represent a physiologically relevant response to hypoxia in osteoblasts. However, HIF-1α-null chondrocytes were unable to maintain ATP levels in hypoxic microenvironments, indicating a fundamental requirement for HIF-1α in the regulation of chondrocyte metabolism, and hence vascularization during long-bone development (Pfander et al., 2003; Cramer et al., 2004).

Cbfa1

Cbfa1 (core-binding factor a1, also called runx2, Osf2, or AML3), a homolog of the Drosophila Runt protein, is a transcription factor that is required for endochondral and intramembranous bone formation. It is expressed in osteoblasts, pre-chondrogenic mesenchymal condensations, and hypertrophic chondrocytes, where it serves as the earliest transcriptional regulator of osteoblast differentiation (Rabie et al., 2004; Tang and Rabie, 2005). Cbfa1 is sufficient to induce premature and ectopic chondrocyte hypertrophy (Rabie et al., 2004). In Cbfa1-deficient mice, VEGF-A cannot be up-regulated, chondrocyte differentiation to hypertrophy is impaired, and cartilage angiogenesis does not occur. These findings demonstrate that Cbfa1 is an essential factor for mediating VEGF-A functions during endochondral ossification (Zelzer et al., 2001). Whether Cbfa1 acts as a direct transcriptional regulator of the VEGF-A gene is unclear. However, the VEGF-A promoter contains Cbfa1 binding sites, and over-expression of Cbfa1 in cultured fibroblasts increases both mRNA and protein expression levels of VEGF (Zelzer et al., 2001).

BMPs

Bone morphogenetic proteins (BMP) are multi-functional growth factors that belong to the TGF-β superfamily. The addition of BMP-2, -4, and -6 to the murine osteoblast-like cell line KS483 led to an augmentation of calcium deposition and VEGF-A production in a dose-dependent manner (Deckers et al., 2000). Osteogenic protein-1 (OP-1 or BMP-7) increased the steady-state level of VEGF-A mRNA by about three-fold in an OP-1 concentration- and time-dependent manner in primary cultures of fetal rat calvaria cells. The increase in VEGF-A...

References

mRNA level depended on transcription and was sensitive to cell replication (Yeh and Lee, 1999). The mRNA levels for VEGFR-1 and VEGFR-2 in the fetal rat calvaria cells were low but detectable by RT-PCR, and were not changed by OP-1 (Yeh and Lee, 1999). Kakudo et al. (2006) investigated whether recombinant human BMP-2 could cause undifferentiated mesenchymal cells to differentiate into chondrocytes and osteoblasts, which then expressed VEGF, thereby creating an advantageous environment for vascularization in bony tissue. In addition to increased VEGF-A expression, BMP-2 is able to up-regulate VEGF-B and VEGF-C expression and synthesis, as well as increase VEGFR-2 levels (Bluteau et al., 2007).

TGF-β1

At least part of the osteogenic activity of TGF-β1 may be attributed to the production of VEGF-A (Chang et al., 2003). The addition of TGF-β1 to MC3T3-E1 cells induced VEGF-A mRNA production, and this induced expression was superinduced by cycloheximide and blocked by actinomycin D and Ro 31-8220, a protein kinase C (PKC) inhibitor. Curcumin, an inhibitor for transcription factor AP-1, also blocked the induction (Spector et al., 2000). Moreover, phospholamban-like phosphatase (PLA), a PKC activator, can enhance VEGF expression in cultured dental follicle cells (Wise and Yao, 2003). Further research has shown that both p44/p42 MAP kinase and p38 MAP kinase contribute to TGF-β-stimulated VEGF-A synthesis in osteoblasts, which suggests a positive feedback loop for osteoblast differentiation (Tokuda et al., 2003a).

CTGF

Connective tissue growth factor (CTGF) is a crucial regulator of cartilage ECM (Perbal, 2004). Ctgf deficiency in Ctgf(-/-) mice leads to skeletal dysmorphisms, as a result of impaired endochondral ossification (Ivkovic et al., 2003). These defects are linked to decreased expression of VEGF-A mRNA and protein levels in the expanded hypertrophic zone in newborn Ctgf mutants. Thus, VEGF-A is probably a target of CTGF action in hypertrophic cartilage (Ivkovic et al., 2003). Moreover, this decrease is not the result of reduced Cbfal expression, suggesting that CTGF is either downstream of, or acts in parallel with, Cbfal in regulating VEGF-A expression (Ivkovic et al., 2003). VEGF-A165-induced angiogenesis was reported to be inhibited selectively and strongly by complexing with CTGF. This complex formation interrupts the binding of VEGF-A165 to VEGF-R2 (Inoki et al., 2002).

MMP9

Reduced expression of the osteoclastic protease MMP9 affects angiogenesis-inducing activity in growth plates (Vu et al., 1998), and MMP9-null growth plates share several characteristics with mouse growth plates in which VEGF-A activities have been blocked, such as expansion of the hypertrophic layer and reduction in both vascularization and ossification (Vu et al., 1998). Hence, it has been suggested that MMP9 regulates vascular invasion by releasing the VEGF-A that is bound to the hypertrophic cartilage matrix. Once released, VEGF-A can bind to its receptors on endothelial cells, osteoclasts, and osteoblasts, and, in so doing, can stimulate their migration and activity at the fracture site (Nakagawa et al., 2000).

TNF-α

TNF-α is a pro-inflammatory cytokine that enhances VEGF-A expression in follicle cells and periodontal ligament cells (Oyama et al., 2000; Wise and Yao, 2003). The enhanced expression of VEGF-A in the dental follicle cells by TNF-α is considerable and could be the main avenue by which TNF-α expression leads to the recruitment and differentiation of osteoclasts (Wise and Yao, 2003).

Hormones

It is widely recognized that the role of thyroid hormone in bone metabolism is mainly ascribed to the regulation of osteoblast activities. Triiodothyronine (T3) alone could stimulate VEGF-A release in MC3T3-E1 cells, so it is likely that thyroid hormone stimulates bone metabolism partially via the up-regulation of VEGF-A release (Tokuda et al., 2003b). In human osteoblast-like cells, a steady expression of VEGF-A is induced by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] (Wang et al., 1996). Furthermore, when alkaline phosphatase (ALP)-positive human osteoblast-like cells are co-cultured with ALP-negative human umbilical vein endothelial cells, the addition of 1,25-(OH)2D3 stimulates ALP activity in the osteoblast-like cells, and increases the expression of VEGF mRNA, followed by increased secretion of VEGF-A (Petit et al., 1997). More recently, ED-71, a novel vitamin D[1,25-(OH)2D3] analog, has been demonstrated to improve angiogenesis within the bone marrow cavity through the increased expression of VEGF-A120 (Okuda et al., 2006).

ANGIOGENESIS AND ENDOCHONDRAL OSSIFICATION

VEGF-A is predominantly produced in tissues that acquire new capillary networks (Shweiki et al., 1993), and the importance of VEGF-A during angiogenesis has been demonstrated in gene knockout studies. Homozygous Vegfa knockout mice die at embryonic days E8-E9, and mice lacking a single Vegfa allele die at days E11-E12, due to deficient endothelial cell development and lack of blood vessels (Carmeliet et al., 1996; Tammela et al., 2005). Moreover, inducible deletion of VEGF-A in neonatal mice results in stunted growth and increased apoptosis of endothelial cells (Gerber et al., 1999). The knockout of one allele of VEGF-R2 in mice also resulted in lack of normal blood vessel development and embryonic lethality (Shalaby et al., 1995). The failure of vasculogenesis leads to growth retardation, developmental anomalies, and, ultimately, embryonic lethality (Carmeliet et al., 1996). Using a VEGF-A120/120 mouse model created by Cre-loxP-mediated removal of VEGF-A exons 6 and 7, researchers showed that VEGF-A164 and/or VEGF-A385 is important in both mediating vascularization and ensuring the normal differentiation of progenitors into hypertrophic chondrocytes, osteoblasts, endothelial cells, and osteoclasts (Maes et al., 2002, 2004).

Hence, VEGF-A is not only essential for normal angiogenesis, but it is also involved in endochondral ossification (Midy and Plouet, 1994; Gerber et al., 1999; Rabie et al., 2002a; Aldridge et al., 2005) (Fig. 1). Cells in the upper zone of the hypertrophic cartilage, especially in the mandibular condyle, secrete VEGF-A, which then regulates the invasion of new blood vessels from the perichondrium and influences the removal of the cartilage matrix (Rabie and Hagg, 2002; Rabie et al., 2002a). The invading blood vessels bring progenitor mesenchymal cells to the mineralization front, and the cells later differentiate into osteoblasts and chondroblasts/osteoclasts involved in endochondral ossification (Rabie and Hagg, 2002;
VEGF-A Regulates Chondrocyte Activity

In rats, VEGF-A protein is expressed at low levels in maturing chondrocytes and in mineralized regions of the cartilage of growing and adult rats (Carlevaro et al., 2000). Similarly, NR-P-1 and NRP-2 expression by chondrocytes may be an autocrine/paracrine process that maintains chondrocyte survival and controls cell differentiation and proliferation (Maes et al., 2004; Zelzer et al., 2004; Zelzer and Olsen, 2005; Bluteau et al., 2007).

VEGF-A Regulates Chondroclast/Osteoclast Activity

It seems that VEGF-A is involved in controlling endothelial cell activities, as well as in osteoclastic differentiation, migration, and activity (Zelzer and Olsen, 2005). In addition, cartilage and bone resorption by chondroclasts and osteoclasts regulates vascular invasion and relies on degradation of the cartilaginous matrix, which occurs mainly via the release of VEGF-A (Rabie et al., 2002a,b). In fact, osteoclasts express VEGF receptor 1, which can bind VEGF-A to induce osteoclast recruitment and bone-resorption activity (Niida et al., 2005). A single injection of recombinant human VEGF-A (rhVEGF-A) into osteopetrotic op/op mice (lack of CSF-1) induced osteoclast recruitment and survival, while stimulating osteoclastic bone resorption (Niida et al., 1999). In contrast, the inhibition of VEGF-A resulted in impaired angiogenesis and a decrease of chondroclast and osteoblast numbers in growth plates (Dass et al., 2007). It has been suggested that VEGF-A is involved not only in osteoclastic recruitment and differentiation, but also in enhancing osteoclastic bone-resorbing activity in cultured rabbit mature osteoclasts (Nakagawa et al., 2000). A recent study demonstrated that VEGF-A-elicited pathways are involved in the induction of receptor of NF-kB ligand (RANKL) expression, suggesting that VEGF-A plays an important role in modulating the angiogenic action of RANKL under physiological or pathological conditions (Henriksen et al., 2003). In the process of monocytic precursor cell differentiation, Niida et al. (1999) demonstrated that VEGF-A can substitute for CSF-1 in the presence of RANKL to promote osteoclastogenesis. Semi-quantitative RT-PCR and fluorescence-activated cell-sorter analysis revealed that VEGF-A can significantly increase both mRNA expression and surface protein expression of receptor activator of NF-kB (RANK) in human endothelial cells, thereby increasing the angiogenic responses of endothelial cells to RANKL (Min et al., 2003). This up-regulation takes place mainly through the Fk-1/KDR-PKC-ERK signaling pathway (Min et al., 2003). VEGF-A can also up-regulate RANKL expression in osteoclast precursors, but it cannot fully substitute for CSF-1 to promote proliferation and osteoclastogenesis (Yao et al., 2006). Furthermore, according to a review by Zelzer and Olsen (2005), VEGF-A is produced by hypertrophic chondrocytes, induces osteoclastogenesis in the perichondrium, and stimulates migration of the osteoclasts into hypertrophic cartilage through the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway (Henriksen et al., 2003; Min et al., 2003).

VEGF-A Regulates Osteoblastic Activity

Although the exact mechanism of VEGF-A production and secretion in osteoblasts has not yet been fully clarified, VEGFs have been implicated in various aspects of osteoblast function. In vitro, VEGF-A mRNA was found to be expressed in rat calvaria-derived osteoblast-enriched cells (Harada et al., 1994). During calvaria organ culture, treatment with VEGF-A led to

Figure 4. Schematic representation of the role of VEGF and the corresponding receptors on osteoblasts, chondrocytes, and chondroclasts/osteoclasts.

Leung et al., 2004). In 24-day-old mice, inactivation of VEGF-A through the systemic administration of a soluble VEGF-A receptor protein, Flt-(1-3)-IgG, suppresses blood vessel invasion, impairs trabecular bone formation, and expands the hypertrophic zone in the growth plate (Gerber et al., 1999). The chondrocyte-specific inactivation of VEGF-A results in aberrant endochondral bone formation, lack of normal blood vessel development, and embryonic lethality in transgenic mice (Haigh et al., 2000). Therefore, VEGF-A seems to play a key role in the highly regulated process of endochondral ossification, which depends on the interplay of chondrocytes, osteoblasts, and osteoclasts/chondroclasts (Fig. 4).
delayed cartilage resorption (Gerber et al., 2000). The following studies support all three possibilities.

Second, VEGF-A could act as an autocrine regulator of osteoblastic activity. First, VEGF-A can couple angiogenesis and osteogenesis by controlling osteoblast activity. Third, by expressing VEGF-A, osteoblasts could induce cells in the vicinity to osteoblastic differentiation and activity. Several mechanisms for osteoblastogenesis depend on the maturity of the osteoblastic cells (Furumatsu et al., 2003). Finally, VEGF-A acts as a potent chemotactant for rat and human osteoblasts, as well as bone-marrow-derived mesenchymal progenitor cells (Nakagawa et al., 2000; Mayr-Wohlfart et al., 2002; Fiedler et al., 2005). VEGF treatment induces VEGF-D expression in osteoblasts, and the inactivation of VEGF-D activity by neutralizing antibodies or VEGFR-3 silencing inhibits both VEGF-A- and VEGF-D-dependent nodule formation in osteoblasts, suggesting that VEGF-D is a downstream effector of VEGF-A in osteogenesis (Orlandini et al., 2006).

Table 3. Effects of VEGF Protein and Gene Therapy on Endochondral Ossification

<table>
<thead>
<tr>
<th>Growth Factor</th>
<th>Delivery Method</th>
<th>Animal Model</th>
<th>Effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhVEGF</td>
<td>Microsphere injection</td>
<td>Rabbit tibia distraction osteogenesis</td>
<td>VEGF increased the blood flow in distracted bone, and VEGF-inhibitor decreased bone blood flow, but failed to influence bone mineral content during bone regeneration</td>
<td>Eckardt et al., 2003</td>
</tr>
<tr>
<td>rhVEGF</td>
<td>PLGA scaffolds</td>
<td>Rat radiated calvarial defects</td>
<td>Blood vessel formation, bone coverage, and bone mineral density were induced.</td>
<td>Orlandini et al., 2006</td>
</tr>
<tr>
<td>rhVEGF</td>
<td>Bioactive glass</td>
<td>Rat cranial bone defects</td>
<td>Blood vessel density and bone mineral density were improved.</td>
<td>Leach et al., 2006</td>
</tr>
<tr>
<td>rhVEGF</td>
<td>Demineralized bone matrix</td>
<td>Rabbit parietal bone defects</td>
<td>New bone formation was enhanced.</td>
<td>Rabie et al., 1996</td>
</tr>
<tr>
<td>rhVEGF</td>
<td>Local injection</td>
<td>Rat experimental tooth movement</td>
<td>The number of osteoclasts during experimental tooth movement and the amount of tooth movement were improved.</td>
<td>Kaku et al., 2001; Kahma et al., 2003</td>
</tr>
<tr>
<td>rhVEGF</td>
<td>Collagen type I carrier</td>
<td>Rabbit mandibular defect</td>
<td>More intensive angiogenesis and increased bone regeneration</td>
<td>Kleinheinz et al., 2005</td>
</tr>
<tr>
<td>VEGF</td>
<td>Gene-activated matrix</td>
<td>Rabbit bone defects</td>
<td>Vascularization and bone regeneration were improved.</td>
<td>Geiger et al., 2005</td>
</tr>
<tr>
<td>VEGF</td>
<td>Retrovirus transferred MDSCs*</td>
<td>Mouse calvarial defects</td>
<td>VEGF had a synergistic effect with BMP4 to recruit more mesenchymal stem cells, and to induce cartilage formation and remodeling during endochondral ossification.</td>
<td>Peng et al., 2002</td>
</tr>
<tr>
<td>VEGF A</td>
<td>Adenovirus local injection</td>
<td>Rat femur defect</td>
<td>Shortened endochondral phase and enhanced angiogenesis and osteogenesis</td>
<td>Tarkka et al., 2003</td>
</tr>
<tr>
<td>VEGF A</td>
<td>Adenovirus local injection</td>
<td>Rabbit femur</td>
<td>Stimulated osteoblast activity and bone formation</td>
<td>Hiltnen et al., 2003</td>
</tr>
<tr>
<td>VEGF A94</td>
<td>AAV** local injection</td>
<td>Rat mandibular condyle</td>
<td>Increased size of mandibular condyle</td>
<td>Rabie et al., 2007</td>
</tr>
<tr>
<td>BMP-4</td>
<td>Retrovirus transferred MDSCs*</td>
<td>Mouse femoral defect</td>
<td>Increased bone remodeling and vascularity, which led to a new bone collar around the graft.</td>
<td>Ito et al., 2005</td>
</tr>
</tbody>
</table>

* MDSC, muscle-derived stem cells.
** AAV, adeno-associated virus.

a significant increase in the thickness of parietal bone, demonstrating a stimulatory effect of VEGF-A on bone formation (Zelzer et al., 2002). Several mechanisms for controlling osteoblast activity have been proposed. First, VEGF-A could couple angiogenesis and osteogenesis by manipulating the angiogenic response to osteoblastic activity. Second, VEGF-A could act as an autocrine regulator of osteoblastic differentiation and activity. Third, by expressing VEGF-A, osteoblasts could induce cells in the vicinity to express factors that, in turn, regulate osteoblastic activity (Zelzer and Olsen, 2005). The following studies support all three possibilities.

In 24-day-old mice, the inhibition of VEGF-A by soluble Flt-1 decreased angiogenesis, reduced cartilage formation, and delayed cartilage resorption (Gerber et al., 1999). VEGF-A can also directly promote differentiation of human primary cultured osteoblasts (Street et al., 2002). Deckers et al. (2000) showed that a low level of VEGF-A expression occurs at the early stage of osteoblast differentiation, before the detection of mRNAs encoding bone sialoprotein and osteocalcin. Only during the terminal differentiation of osteoblasts is their expression greatly increased, achieving a maximum level during the period of mineralization (Deckers et al., 2000). This finding suggests that VEGFs are indispensable in the regulation of bone remodeling, because they stimulate osteoblast differentiation. Moreover, the amount of increase in VEGF expression during osteoblastogenesis depends on the maturity of the osteoblastic cells (Furumatsu et al., 2003). Finally, VEGF-A acts as a potent chemotactant for rat and human osteoblasts, as well as bone-marrow-derived mesenchymal progenitor cells (Nakagawa et al., 2000; Mayr-Wohlfart et al., 2002; Fiedler et al., 2005). VEGF treatment induces VEGF-D expression in
in vascularization and bone regeneration in defects (Table 3). For example, when poly(lactic-co-glycolic acid) (PLGA) scaffolds that have been incorporated with rhVEGF-A were loaded into radiated calvarial defects of Fisher rats, there were significant increases in blood vessel formation, bone coverage, and bone mineral density when compared with defects loaded with only PLGA scaffolds (Orlandini et al., 2006). Scaffolds coated with a rhVEGF-A-releasing layer (bioactive glass) also demonstrated significant improvements in blood vessel density and bone mineral density in rat cranial bone defects (Leach et al., 2006). The combination of rhVEGF-A and demineralized bone matrix grafts (Rabie, 1997) significantly increased new bone formation in rabbit parietal bone defects (Bassem et al., 2006). Local administration of rhVEGF-A exhibited an increased number of osteoclasts during experimental tooth movement, as well as increases in the amount of tooth movement (Kaku et al., 2001; Kohno et al., 2003). The use of rhVEGF-A in bone defect models has shown that new blood vessel formation preceded the osteogenic front, and that increased angiogenesis corresponded to increased bone formation (Kleinheinz et al., 2005). Although these findings are promising, the possible applications of these growth factors are limited by the need for repeated and expensive dosages, and by their short biological half-life (Zhang et al., 2002).

Recent advances in molecular biology have given promise for the development of novel approaches, and gene therapy for the maximal stimulation of osteogenesis ultimately overcomes conventional growth factor delivery limitations, which act as a one-time bolus (Chen et al., 2002). Using a gene-activated matrix (GAM) to deliver the VEGF-A gene, Geiger et al. (2005) demonstrated a significant increase in vascularization and bone regeneration in rabbit bone defects. In vivo gene therapy with adenoviral VEGF-A has been proven to be able to modify bone defect healing in the rat femur (Tarkka et al., 2003). Similarly, using a rabbit model, Hiltunen et al. (2003) concluded that VEGF-A gene transfer delivered by an adenovirus vector resulted in increased bone formation by stimulating osteoblast activity. However, a major disadvantage of current adenoviral vectors is the induction of a significant host immune response (Jiang et al., 2001). They are therefore inappropriate for the treatment of non-fatal craniofacial anomalies. Among the viral and non-viral vectors, the recombinant adeno-associated virus (rAAV) vector is an efficient and safe procedure to facilitate gene induction in the skeletal system. Ito et al. (2005) established an unconventional means of evaluating cortical bone healing with femoral allografts coated with freeze-dried rAAV encoding RANKL and VEGF-A, and identified a continuing active resorption of the dead cortical bone with new bone formation. This approach markedly altered allograft healing and generated a live, vascularized, remodeling, bony union. Local injection of rAAV mediated VEGF-A expression in the condylar cartilage, demonstrating a significantly increased size of the mandibular condyle (Rabie et al., 2007). Therefore, VEGF-A has possible clinical applications for achieving both angiogenesis and bone formation. Further proof-of-concept advances are needed to bring this approach to fruition, and to stimulate maximum osteogenesis.

ACKNOWLEDGMENTS

Work from the authors' laboratory cited in this article was supported by grant No. 10206152.11222.21700.302.01, awarded by The University Strategic Research Theme: Genomics, Proteomics & Bioinformatics, The University of Hong Kong, as well as by CERG grant No. 10206968.22311.08003.324.01, awarded to Professor Rabie. We thank Mr. Ting Tung Yuen for preparing the illustration and Dr. Trevor Lane for editing assistance.

REFERENCES

