<table>
<thead>
<tr>
<th>Title</th>
<th>Intussusception trends in Hong Kong children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nelson, EAS; Chiu, SSS; Ip, KS; Lau, D; Lau, YL; Ng, CH; Ng, DK; Poon, KH; Yiu, WL; Kwok, WK; Tam, PKH; Yeung, CK; Tam, JS; Bock, H; Boudville, I; Tang, HH</td>
</tr>
<tr>
<td>Citation</td>
<td>Hong Kong Medical Journal, 2007, v. 13 n. 4, p. 279-283</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2007</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/57418</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Hong Kong Med J 2007;13:279-83

Objectives
To assess trends in intussusception and to validate the coding in Hong Kong's computerised discharge information system.

Design
Case notes were reviewed for all children under the age of 5 years who had a discharge diagnosis indicating intussusception or a procedure indicating reduction of intussusception during the 6-year period 1 July 1997 through 30 June 2003.

Results
Intussusception rates for infants under 1 year of age (108/100 000) and under 5 years of age (38/100 000) were slightly higher than previous estimates (78-100/100 000 and 27-32/100 000, respectively) that used passive discharge data alone.

Conclusions
Hong Kong's passive computer data systems could be used to monitor rates of intussusception after the introduction of new rotavirus vaccines, provided readmissions, inter-hospital transfers, and hospital follow-ups for the same episode are taken into account.

Introduction
Rotashield, an oral tetravalent rotavirus vaccine, was licensed by the Food and Drug Administration in 1998 and recommended for use in the routine immunisation schedule of all United States infants. The vaccine was withdrawn in the latter part of 1999, as its use was associated with intussusception. Initial estimates of the intussusception risk due to the vaccine was 1 in 10 000 but subsequent analyses suggested a lower risk, which increased with increasing age. Using computerised discharge data from the Clinical Management System (CMS) of Hong Kong's Hospital Authority (HA), the incidence of hospitalisation for intussusception in Hong Kong infants under the age of 1 year was previously estimated to be 78-100/100 000 for the period July 1997 to June 1999 inclusive, which was greater than that encountered in the United States and Europe. To assess intussusception trends and validate the CMS coding, this study reviewed the case notes of all children under the age of 5 years who had a CMS discharge diagnosis indicating intussusception or a procedure indicating correction of intussusception during the 6-year period 1 July 1997 to 30 June 2003.

Methods
The CMS, introduced in the latter part of 1996, collects uniform discharge and other information on all patients admitted to HA hospitals throughout Hong Kong. Such information included patient identifiers, date of birth, sex, a maximum of 15 diagnoses and 15 procedures (classified by the International Classification of Diseases [ICD9-CM] codes), and admission and discharge dates. Information was retrieved on patients admitted to any ward (medical or surgical) with a diagnosis coded as ICD 560.0 (intussusception) or any procedure coded as ICD 46.80 (reduction of intussusception) during the 6-year period 1 July 1997 to 30 June 2003. As it was possible that a proportion of patients with intussusception will not have had a correctly recorded ICD code at discharge, information from the Radiology Information System (RIS) was also obtained for all patients that had a radiological investigation indicating reduction of intussusception, namely: RIS Exam Codes (3102 Ultrasound [General]—Intestine, including pyloric stenosis, intussusception etc; 7405 Interventional Radiology [Gastrointestinal Tract]—reduction of intussusception).

A trained research assistant abstracted initial data to the case report form (CRF). These data were reviewed by one of the investigators, to determine whether the corresponding patient met the inclusion criteria and to confirm the method of diagnosis. Patients were included in the study only if they were aged younger than 60 months at the time intussusception was diagnosed radiographically, surgically, or by postmortem
examination during the defined surveillance period. Children were excluded if the diagnosis was based solely on clinical signs and symptoms. Each case note reviewed was further classified: primary admission with intussusception (no inter-hospital transfer); primary admission with intussusception transferred from another hospital; primary admission with intussusception transferred to another hospital; readmission with a new primary diagnosis of intussusception (children with more than one separate admission for an intussusception); follow-up for previous admission with intussusception (not a case of intussusception); readmission with the same episode of intussusception (not a new intussusception); and wrongly coded (not a case of intussusception).

The CRF was used to abstract demographic details and information on: medical history, including gastro-intestinal problems and previous admissions; immunisation history; travel history; clinical signs and reported symptoms noted on admission. The latter included pain, irritability, incontinence, crying, lethargy, vomiting, diarrhoea, blood and mucus in stools. Admission information was also collected on examination findings and the patient’s general condition (well, alert, restless, irritable, lethargic, unconscious, floppy), vital signs (features of shock, pallor, or dehydration), abdominal masses, distension, tenderness, rectal examination findings, as well as corresponding available investigation results. Such investigations included: blood count, liver/renal function tests, ultrasound examination, plain abdominal radiographs, air or contrast enemas, stool samples, and nasopharyngeal aspirates; how intussusception was diagnosed (by air enema, barium enema, ultrasound, or at surgery); the method of treatment (none, ie spontaneous resolution; successful radiological reduction [liquid, hydrostatic or air enema], or failed radiological reduction [referred for surgery]). In the latter eventuality, whether surgical resection and/or intensive care treatment was undertaken was also noted. Details of medications given and the eventual outcome (recovered, deceased, or transferred to another hospital) were also abstracted. The Chinese University of Hong Kong’s Clinical Research Ethics Committee, as well as corresponding Ethics Committees of individual hospitals approved the study.

Descriptive statistics were used for analysis. Clinical signs and symptoms, diagnosis, curative measures, outcome, and immunisation history of the intussusception cases were tabulated. Tables were generated giving the frequency of intussusception by season. The incidence of intussusception, with 95% confidence intervals (CIs) in children less than 5 years old and less than 1 year old was computed for each year and overall. The numerator consisted of all cases of definite intussusception identified in this study including deaths due to definite intussusception. The annual incidence was calculated as the number of new cases reported in the study period divided by the susceptible population based on the birth cohort, with the assumption that 90% of in-patient care occurs in government hospitals.

Results

A total of 688 potential patients with an admission diagnosis of intussusception were identified through the CMS and an additional 15 through the RIS. Review of the corresponding 703 case notes yielded 604 admissions with a diagnosis of intussusception for further analysis. Those not included were 49 children admitted for follow-up and 50 whose diagnosis was shown not to be intussusception on review. However...
a number of patients had two or more separate episodes of intussusception; in all there were 531 individual subjects: 21 had two separate episodes, and four had three episodes. Overall 40 intussusception admissions involved inter-hospital transfers. Twenty-four children had a recurrence of intussusception during their admission and four were readmitted for the same episode of intussusception. Due to duplication of various coded diagnoses, without a review of case notes the CMS and RIS diagnosis alone overestimated the numbers of subjects with intussusception by 24% [(703-531)/703] and the number of separate episodes by 17% [(703-531-54)/703]. The wrong diagnosis was coded in 7% of cases. One child was reported to have died. In 11 (2%) of the patients intussusception resolved spontaneously, in 355 (67%) after radiological manoeuvres, and in 165 (31%) as a result of surgery or another intervention.

The mean age of those affected was 15.9 months (standard deviation, 14.1 months), the median age was 10.0 months and the male:female ratio was 1.5:1. Fifty-six per cent of cases were in infants (Fig 1). The majority of the parents were ethnic Chinese (mother 95%, father 96%). There was no apparent seasonality of intussusception (Fig 2). Vomiting and features of abdominal pain were the most common presentations (Table 1), although information on possible abdominal pain was missing in 100 subjects. Abdominal mass on examination was noted in 46% and blood on rectal examination in 28% (Table 1). Diagnosis was mainly by ultrasound alone (79.7%), air enema alone (8.7%), or barium enema alone (6.4%) (Table 2).

In 13 subjects diagnosis was made at surgery. Eight per cent of children had been admitted to hospital in the previous 4 weeks. Information on previous immunisation was usually not available in the case notes. In 9% (16/180) there was a history of vaccination in the past month.

Total Hong Kong live births were used to estimate the incidence and it was assumed that 90% of the birth cohort would have been admitted to HA hospitals. The annual incidence in children under 5 years old was 38/100 000 (95% CI, 35-42/100 000) and in those under 1 year old it was 108/100 000 (95% CI, 95-120/100 000) (Table 3). There was no consistent trend in the incidence of intussusception during this 6-year period (Fig 3).

Discussion

Annual intussusception incidence rates per 100 000 births were estimated for 1997 to 2003 using total Hong Kong live births as denominators (Table 3). The estimated rate of hospitalisation for intussusception excludes those to Hong Kong private hospitals, which was assumed to account for 10% of all such in-patient admissions. The HA statistical reports for the periods 1997/1998 to 2003/2004 revealed that 11.6% of patients (of all ages) with ICD-9 code 560 (intestinal obstruction without mention of hernia), or

TABLE 1. Clinical signs and symptoms noted on admission (n=531)

<table>
<thead>
<tr>
<th>Information available from initial history</th>
<th>No. (%)</th>
<th>Missing data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vomiting</td>
<td>432 (81)</td>
<td>-</td>
</tr>
<tr>
<td>Possible abdominal pain</td>
<td>265 (61)</td>
<td>100</td>
</tr>
<tr>
<td>Irritability</td>
<td>209 (40)</td>
<td>7</td>
</tr>
<tr>
<td>Blood in stool</td>
<td>197 (37)</td>
<td>2</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>183 (34)</td>
<td>-</td>
</tr>
<tr>
<td>Blood per rectal exam</td>
<td>101 (19)</td>
<td>2</td>
</tr>
<tr>
<td>Crying</td>
<td>88 (17)</td>
<td>11</td>
</tr>
<tr>
<td>Abdominal mass</td>
<td>90 (17)</td>
<td>1</td>
</tr>
<tr>
<td>Lethargy</td>
<td>82 (16)</td>
<td>12</td>
</tr>
<tr>
<td>Mucous in stool</td>
<td>80 (15)</td>
<td>2</td>
</tr>
</tbody>
</table>

Examination findings at time of admission

Abdominal mass	246 (46)	-
Blood noted on rectal exam	149 (28)	-
Possible abdominal tenderness	131 (25)	1
Dehydration	125 (24)	6
Abdominal distension	122 (23)	1
Fever	108 (21)	6
‘Red currant jelly’ stool	86 (16)	-
Abnormal bowel sounds	78 (15)	-
Pallor	22 (4)	-
Rectal mass	3 (1)	-
Rebound or peritonism	1 (0.2)	1
Rectal prolapse	0	-
with ICD-10 code K56 (paralytic ileus and intestinal obstruction without mention of hernia) from the 2001/2002 report onwards, were treated in private hospitals (www.ha.org.hk). There was no clear trend in these private hospital admission rates (Fig 3) to suggest that variations in intussusception incidence were related to the changing proportion of cases treated in private hospitals. However as data from the HA statistical reports do not specifically refer to intussusception or to the age range less than 5 years, it is difficult to conclude whether variations in admissions to private hospitals could account for variations in intussusception incidence. It should also be noted that there are no data on the extent to which Hong Kong–born infants receive treatment in mainland China. Acknowledging these potential limitations our rate of intussusception for infants under 1 year of age (108/100 000) was slightly higher than our previous estimate (78-100/100 000) using the passive CMS data alone.6 Our rate of intussusception for infants under 5 years of age (38/100 000) also appears somewhat higher than our previous estimate (27-32/100 000).6 For subjects under 1 year old, our rates are high compared to the United States (18-56 per 100 000),9,10 and the United Kingdom (66 per 100 000).11 Intussusception hospitalisation rates in the United States have been noted to vary by race; being 27 to 37 in whites, 32 to 50 in blacks, and highest (112-217) among infants of other races.9

The ICD codes that are entered into the CMS are selected by the responsible medical officer at the time of the patient’s discharge. The system allows the doctor to type in an ICD code directly if known or to use a keyword search. Thus, the ICD codes entered may be influenced by a number of factors including the availability of laboratory results at the time of discharge. By reviewing the case notes of all patients

TABLE 2. How intussusception was diagnosed (n=531)

<table>
<thead>
<tr>
<th>Method</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasound only</td>
<td>423 (79.7)</td>
</tr>
<tr>
<td>Air enema only</td>
<td>46 (8.7)</td>
</tr>
<tr>
<td>Barium enema only</td>
<td>34 (6.4)</td>
</tr>
<tr>
<td>Surgery only</td>
<td>10 (1.9)</td>
</tr>
<tr>
<td>Ultrasound and surgery</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Ultrasound and air enema</td>
<td>4 (0.8)</td>
</tr>
<tr>
<td>Ultrasound and barium enema</td>
<td>5 (0.9)</td>
</tr>
<tr>
<td>Air enema and surgery</td>
<td>2 (0.4)</td>
</tr>
<tr>
<td>Air enema and barium enema</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Other or unknown</td>
<td>5 (0.9)</td>
</tr>
</tbody>
</table>

* Include computed tomographic scan and clinical diagnosis.

TABLE 3. Incidence of intussusception (IS) for subjects under 1 year and under 5 years of age assuming that 90% of all such children (n=531) visit Hospital Authority hospitals

<table>
<thead>
<tr>
<th>Year</th>
<th>Birth cohort</th>
<th>Age <5 years</th>
<th>No. of definite IS cases</th>
<th>Annual incidence of IS per 100 000</th>
<th>95% CI</th>
<th>Age <1 year</th>
<th>No. of definite IS cases</th>
<th>Annual incidence of IS per 100 000</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>29 569*</td>
<td>39</td>
<td>29.3</td>
<td>20.1, 38.5</td>
<td>21</td>
<td>78.9</td>
<td>53</td>
<td>110.6, 141.0</td>
<td>45.2, 112.6</td>
</tr>
<tr>
<td>1998</td>
<td>53 000</td>
<td>93</td>
<td>39.0</td>
<td>31.1, 46.9</td>
<td>53</td>
<td>111.1</td>
<td>50</td>
<td>108.3, 138.3</td>
<td>81.2, 141.0</td>
</tr>
<tr>
<td>1999</td>
<td>51 300</td>
<td>97</td>
<td>42.0</td>
<td>33.7, 50.4</td>
<td>50</td>
<td>108.3</td>
<td>65</td>
<td>133.5, 165.9</td>
<td>101.1, 165.9</td>
</tr>
<tr>
<td>2000</td>
<td>54 100</td>
<td>109</td>
<td>44.8</td>
<td>36.4, 53.2</td>
<td>65</td>
<td>133.5</td>
<td>48</td>
<td>110.6, 141.9</td>
<td>79.4, 141.9</td>
</tr>
<tr>
<td>2001</td>
<td>48 200</td>
<td>88</td>
<td>40.6</td>
<td>32.1, 49.0</td>
<td>48</td>
<td>110.6</td>
<td>42</td>
<td>96.8, 126.1</td>
<td>67.5, 126.1</td>
</tr>
<tr>
<td>2002</td>
<td>48 200</td>
<td>70</td>
<td>32.3</td>
<td>24.7, 39.8</td>
<td>42</td>
<td>96.8</td>
<td>18</td>
<td>88.8, 129.7</td>
<td>47.8, 129.7</td>
</tr>
<tr>
<td>2003</td>
<td>22 534*</td>
<td>35</td>
<td>34.5</td>
<td>23.1, 45.9</td>
<td>18</td>
<td>88.8</td>
<td>5</td>
<td>0.9, 29.7</td>
<td>47.8, 129.7</td>
</tr>
<tr>
<td>Total</td>
<td>306 903</td>
<td>531</td>
<td>38.4</td>
<td>35.2, 41.7</td>
<td>297</td>
<td>107.5</td>
<td>95.3, 119.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Birth cohort for the year 1997 and 2003 was adjusted, since the study was not conducted for the entire year in 1997 and 2003 (the survey was from 1 July 1997 to 30 June 2003)
coded as intussusception, we were able to establish which patients had been incorrectly coded. Use of data from the RIS enabled us to identify an additional 15 cases that did not have a CMS code indicating intussusception. It is possible that there were some additional definite cases that did not have either a CMS or RIS indicative code of intussusception. Review of surgical and radiological logbooks might have identified such cases but this was not feasible with the available resources.

This case-note review of intussusception admissions at HA hospitals in Hong Kong shows an incidence similar to that estimated from passive surveillance data alone. The present study estimate also took account of inter-hospital transfers and follow-up visits for the same episode of intussusception, which accounted for 24% of recorded admissions. The annual incidence of intussusception appeared to peak in 2000. However, it is not possible to conclude that there has been a consistent downward incidence trend since then, though such trends have been noted elsewhere. The CMS and RIS systems could be used to monitor intussusception rates after the introduction of new rotavirus vaccines, provided re-admissions, inter-hospital transfers, and hospital follow-ups for the same episode are accounted for.

Declaration

This research project received financial support from GSK Biologicals. EAS Nelson has received funding and support from Merck for rotavirus surveillance studies, is currently principal investigator of a phase 3 rotavirus vaccine study funded by GlaxoSmithKline, and has received lecture fees and travel support from GlaxoSmithKline. YL Lau is currently a principal investigator of a phase 3 rotavirus vaccine study funded by GlaxoSmithKline.

Hong Kong Intussusception Study Group

Principal investigator

EAS Nelson, Department of Paediatrics, The Chinese University of Hong Kong

Members

Department of Paediatrics and Adolescent Medicine

- SS Chiu (The University of Hong Kong)
- KS Ip (Pamela Youde Nethersole Eastern Hospital)
- David Lau (Tseung Kwan O Hospital)
- YL Lau (The University of Hong Kong)
- CH Ng (Queen Elizabeth Hospital)
- Daniel K Ng (Kwong Wah Hospital)
- WL Yiu (Princess Margaret Hospital)

Department of Surgery

- WK Kwok (Queen Elizabeth Hospital)
- Paul Tam (The University of Hong Kong)
- CK Yeung (The Chinese University of Hong Kong)

Department of Microbiology

- John S Tam (The Chinese University of Hong Kong)

GlaxoSmithKline Biologicals Singapore

- Hans Bock
- Irving Boudville
- Haiwen H Tang

Acknowledgements

We thank the HA Statistics and Research Unit of HA Head Office and Clinical Data Analysis & Report System (CDARS) team of HA IT Services for providing data from the HA Information Systems. Priya Rajagopal and PV Suryakiran, GlaxoSmithKline and Kai-chow Choi, The Chinese University of Hong Kong provided statistical advice and support.

References