<table>
<thead>
<tr>
<th>Title</th>
<th>Role of RET and PHOX2B gene polymorphisms in risk of Hirschsprung’s disease in Chinese population [9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Miao, X; GarciaBarceló, MM; So, MT; Leon, TYY; Lau, DKC; Liu, TT; Chan, EKW; Lan, LCL; Wong, KKY; Lui, VCH; Tam, PKH</td>
</tr>
<tr>
<td>Citation</td>
<td>Gut, 2007, v. 56 n. 5, p. 736</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2007</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/57411</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; Gut . Copyright © B M J Publishing Group.</td>
</tr>
</tbody>
</table>
Role of RET and ko=PHOX2B gene polymorphisms in risk of Hirschsprung’s disease in Chinese population

Gut 2007;56:736
doi:10.1136/gut.2006.116145

Updated information and services can be found at:
http://gut.bmj.com/cgi/content/full/56/5/736

These include:

References
This article cites 10 articles, 5 of which can be accessed free at:
http://gut.bmj.com/cgi/content/full/56/5/736#BIBL

1 online articles that cite this article can be accessed at:
http://gut.bmj.com/cgi/content/full/56/5/736#otherarticles

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to Gut go to:
http://journals.bmj.com/subscriptions/
Role of RET and PHOX2B gene polymorphisms in risk of Hirschsprung’s disease in Chinese population

Hirschsprung’s disease (OMIM 142623) is a complex congenital disorder characterised by the absence of ganglion cells of the plexus myentericus and plexus submucosus in the distal gut. Aganglionosis is attributed to a defect of the enteric nervous system, in which ganglion cells fail to innervate the lower gastrointestinal tract during development, resulting in failure to pass meconium, chronic severe constipation and colonic distension in the neonatal period.1 The receptor tyrosine kinase gene RET, which is expressed in neural crest cell-derived enteric neurogenesis, Phox2b, is required for normal development of the enteric nervous system, is the major susceptibility gene for Hirschsprung’s disease.2 There is growing evidence indicating that functional single nucleotide polymorphisms (SNPs) of RET could act as low susceptibility factors for Hirschsprung’s disease.3 In addition, PHOX2B encodes a transcription factor that is involved in the development of the noradrenergic nervous system and that plays an important role in the regulation of RET transcription.4 Our previous data showed that genotypes comprising allele A of the IVS2+100 A>G SNP of PHOX2B were associated with increased risk of Hirschsprung’s disease.5 In view of the role of RET and PHOX2B in the development of the enteric nervous system, we hypothesised that RET and PHOX2B polymorphisms are likely to interact and have a joint effect in conferring susceptibility to Hirschsprung’s disease.

This case-control study consisted of 256 ethnic Chinese patients histologically diagnosed with sporadic Hirschsprung’s disease, including 13 patients with total colonic aganglionosis, 28 with long-segment aganglionosis and 215 with short-segment aganglionosis. Controls were 242 unselected, unrelated, ethnic Chinese subjects. At recruitment, informed consent was obtained from each subject. This study was approved by the institutional review board of the University of Hong Kong. Genotypes for RET promoter polymorphisms (G/G>A and 1A>C) and PHOX2B were analysed using polymerase chain reaction and direct sequencing, as described previously.6,7 We observed an increased risk of Hirschsprung’s disease in homozygous genotypes of the disease-associated RET alleles 5A/A or 1C/C when compared with 5G/A and 5G (OR = 7.78, 95% CI 5.21 to 11.70), or 1AC and 1AA (OR = 6.08, 95% CI 4.01 to 9.12) genotypes. The same risk was seen with the PHOX2B IVS2+100 AA genotype compared with the GG or GA genotypes (OR = 1.75, 95% CI 1.17 to 2.58). We then investigated the potential interaction between the RET and PHOX2B genotypes in the risk of Hirschsprung’s disease using the additive interaction models (table 1).8 Since the 5 and 1 RET SNPs were in almost complete linkage disequilibrium in our population (D* = 0.986, p<0.001), only the former was selected for further analysis. Among subjects carrying at least one RET 5G allele or at least one PHOX2B G allele, the OR for Hirschsprung’s disease was 1.56 (95% CI 0.82 to 2.75) or 7.98 (95% CI 3.64 to 17.60). The OR increased, however, to 11.72 (95% CI 6.35 to 21.55) among subjects carrying both the RET 5AA and PHOX2B AA genotypes (p<0.001, test for homogeneity). The OR value of 11.72 is larger than the values of the RET 5AA and the PHOX2B AA genotypes independently (7.78+1.75= 9.53), which indicates a more than additive interaction between the RET and the PHOX2B SNPs on risk of developing Hirschsprung’s disease according to the statistical model.9

To our knowledge, this is the first study to demonstrate that the interaction between RET and PHOX2B polymorphisms has a substantial impact on risk of Hirschsprung’s disease. This recognised multifactorial genetic disorder requires the interaction of several unrelated genes to produce the phenotype. Both RET and PHOX2B have important roles in the development of the enteric nervous system and PHOX2B is involved in the transcriptional regulation of RET in cell lines originated from neural crest. It is therefore biologically plausible that a joint effect of RET and PHOX2B SNPs affects the development of Hirschsprung’s disease. However, the essential mechanisms behind our finding need to be investigated.

Acknowledgements

We extend our gratitude to all subjects who participated in the study. This work was supported by the research grant HKU 7392/04M from the Hong Kong Research Grants Council to Maria-Mercè García-Barceló.

Table 1 Risk of Hirschsprung’s disease associated with RET genotypes combined with PHOX2B genotypes

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Patients (n = 256)</th>
<th>Controls (n = 242)</th>
<th>OR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG + GA</td>
<td>19 (7.4)</td>
<td>65 (26.9)</td>
<td>1.00</td>
</tr>
<tr>
<td>GG + GA</td>
<td>57 (22.2)</td>
<td>122 (50.4)</td>
<td>1.56 (0.82–2.75)</td>
</tr>
<tr>
<td>AA</td>
<td>36 (14.1)</td>
<td>15 (6.2)</td>
<td>7.98 (3.64–17.60)</td>
</tr>
<tr>
<td>AA</td>
<td>144 (56.3)</td>
<td>40 (16.5)</td>
<td>11.72 (6.35–21.55)</td>
</tr>
</tbody>
</table>

| * ORs and 95% Cis were calculated with unconditional logistic regression adjusted for gender. |

References

The incidence and risks of liver biopsy in non-cirrhotic patients: An evaluation of 3806 biopsies

Liver biopsy plays a crucial role in the diagnosis and management of liver diseases. For the past decade, this invasive procedure has become a safe one with the prevailing application of an ultrasound-guided method, the use of thinner gauge needles and improved operational techniques. Over the past years, the debatable issue of liver biopsy has mainly focused on the safety and suitability of a shorter observation time with respect to cost savings.8 Refering to this issue, Beddy et al even shortened their observation time to 1 hour and indicated that only one haemorrhagic complication occurred within one hour amongst 500 liver biopsy occasions. There were no recorded delayed complications or deaths at follow up.8 Generally, we agree with the conclusion that outpatient liver biopsy is safe when done in a

www.gutjnl.com