<table>
<thead>
<tr>
<th>Title</th>
<th>A laboratory strategy for genotyping haemoglobin H disease in the Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chan, AYY; So, CC; Ma, ESK; Chan, LC</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal Of Clinical Pathology, 2007, v. 60 n. 8, p. 931-934</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2007</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/57151</td>
</tr>
<tr>
<td>Rights</td>
<td>Journal of Clinical Pathology. Copyright © B M J Publishing Group.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
A laboratory strategy for genotyping haemoglobin H disease in the Chinese

Amy Yuk-Yin Chan, Chi-Chiu So, Edmond Shiu-Kwan Ma and Li-Chong Chan

J. Clin. Pathol., 2007;60:931-934; originally published online 3 Oct 2006; doi:10.1136/jcp.2006.042242

Updated information and services can be found at:
http://jcp.bmj.com/cgi/content/full/60/8/931

These include:

References

This article cites 19 articles, 9 of which can be accessed free at:
http://jcp.bmj.com/cgi/content/full/60/8/931#BIBL

Rapid responses

You can respond to this article at:
http://jcp.bmj.com/cgi/eletter-submit/60/8/931

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to *Journal of Clinical Pathology* go to:
http://journals.bmj.com/subscriptions/
A laboratory strategy for genotyping haemoglobin H disease in the Chinese

Amy Yuk-Yin Chan, Chi-Chiu So, Edmond Shiu-Kwan Ma, Li-Chong Chan

Background: The thalassaemias are the commonest blood disorders worldwide, with South East Asia and southern China as areas of high prevalence. Accurate diagnosis of these disorders helps in clinical management with improved outcome.

Methods: The α-globin genotypes of 100 Chinese patients in Hong Kong with haemoglobin H (Hb H) disease were characterised. Single-tube multiplex gap-PCR was used to detect −αSEA, −α^3.7 and −α^4.2, while Hb CS, Hb QS and codon 30 (ΔGAG) were identified by single-tube multiplex amplification refractory mutation system (ARMS). Automated direct nucleotide sequencing of the amplified α2- and α1-globin genes was performed to characterise other non-deletional α-thalassaemia determinants.

Results: In the 100 cases studied, 99 cases had −αSEA in combination with deletional α^-thalassaemia or non-deletional α-globin mutation involving the α2-globin gene. In 70 cases of the deletional form, 43 cases showed the genotype of (−αSEA/−α^3.7) and 27 cases of (−αSEA/−α^4.2). Three of the 27 cases of (−αSEA/−α^4.2) were found to have Hb Q-Thailand linked in-cis with −α^4.2. The remaining 30 cases were of non-deletional form with the following genotypes: 11 cases of (−αSEA/−αHbQS), 9 cases of (−αSEA/−αHbCS), 3 cases of (−αSEA/−αHb4.2), 2 cases of (−αSEA/−αHb4.1), 1 case of (−αSEA/−αHb5.7) and 1 case of (−αSEA/−αHb4.2).

Conclusions: Based on two rapid diagnostic tests, multiplex gap-PCR and multiplex ARMS, more than 90% of the cases were genetically characterised. This laboratory strategy should be widely applicable for genetic diagnosis of α-thalassaemia.

MATERIALS AND METHODS

Patient samples

Between 1998 and 2003, 100 cases of Hb H disease (97 Chinese, 2 Thais, 1 Filipino) were diagnosed by routine haemoglobin study. Seven cases were related, coming from three families with Hb H disease. The age range was 1–84 years, with more than two-thirds of the patients older than 20 years and one-third older than 40 years.

DNA analysis

Genomic DNA was extracted from peripheral blood of patients. Multiplex gap-PCR was adopted and modified to detect −αSEA, −α^3.7 and −α^4.2. Genomic DNA samples were amplified in a GeneAmp9700 thermocycler using the following cycling parameters: initial denaturation at 95°C for 15 min, followed by 30 cycles of 98°C denaturing for 45 s, 60°C annealing for 1 min 30 s, and 72°C for 2 min 15 s. A final 5 s with extension completed the reaction. Each PCR was set up in a total volume of 50 μl containing: 300–600 ng genomic DNA, 200 μM of each dNTP, 1.5 mM MgCl₂, 1× Q-solution (Qiagen, Hilden, Germany), 2.5 U HotStarTaq DNA polymerase in supplied reaction buffer (Qiagen) and 9 different primers at various concentrations (table 1). A 10 μl aliquot of each amplified product was analysed by electrophoresis on a 1% agarose gel after staining with ethidium bromide.

For the detection of the three common non-deletional α2-thalassaemia determinants, Hb CS, Hb QS and codon 30 (ΔGAG), the multiplex amplification refractory mutation system (ARMS) was performed to characterise other non-deletional α-thalassaemia determinants.
system (ARMS)\(^4\) approach was modified and used. Genomic DNA samples were amplified in a GeneAmp9700 thermocycler using the following cycling parameters: initial denaturation at 94 °C for 12 min, followed by 32 cycles of 94 °C denaturing for 40 s, 62 °C annealing for 20 s, and 72 °C extension 3 min. A final 7 minutes extension completed the reaction. Each PCR was set up in a total volume of 20 μl containing: 200 μM of each dNTP, 2.0 mM MgCl\(_2\), 10% dimethysulphoxide, 16.5 mM ammonium sulphate, 0.01% (v/v) gelatin, 10 mM Tris-HCL, pH 8.3, 50 mM KCL, 5 U AmpliTaq Gold DNA polymerase and 6 different primers at various concentrations (table 1). A 10 μl aliquot of each amplified product was analysed by electrophoresis on an 8% polyacrylamide gel.

Automated direct nucleotide sequencing (ABI 377, Applied Biosystems, Foster City, California, USA) of the amplified α2- and α2-globin genes was performed to characterise other non-deletional α-thalassaemia determinants.\(^9\)

RESULTS

Table 2 presents results of α genotyping for all cases. Except one were caused by co-inheritance of --SEA with either deletional or non-deletional α-thalassaemia determinants. Deletional Hb H disease, that is --SEA in association with α2-deletion (–α\(^2\) 2 and –α\(^2\) 2), accounted for 70% of the cases. Figure 2 shows the electrophoretic results of multiplex gap-PCR product in deletional Hb H disease on 1% agarose gel. Three cases of (–α\(^2\) 2) were also found to have Hb Q-Thailand\(^10\)\(^11\) linked in-cis with –α\(^2\) 2 by direct nucleotide sequencing of the amplified α2-globin gene.

Among the remaining 30% of cases with Hb H disease, six different types of non-deletional determinants were found, all in the α2-globin gene. They were Hb CS, Hb QS, codon 30 (ΔGAG),\(^12\) codon 31 (AGG→AAG),\(^13\) poly-A signal (AATAAA→AATGAA)\(^14\) and Hb Westmead (codon 122 CAC→CAG).\(^14\)\(^15\) Our multiplex ARMS detected Hb CS, Hb QS and codon 30 (ΔGAG) and resolved 80% (ie 24/30) of the non-deletional cases. Figure 3 shows the electrophoretic results of three common non-deletional Hb H disease as detected by our multiplex ARMS in an aqueous 8% polyacrylamide gel.

The remaining three non-deletional determinants were characterised by direct nucleotide sequencing of the amplified α2-globin gene. They were codon 31 (AGG→AAG),\(^13\) poly-A signal AATAAA→AATGAA\(^14\) and Hb Westmead (codon 122 CAC→CAG).\(^14\)\(^15\) Figure 4 illustrates the automated sequencing result of codon 31 (AGG→AAG).

DISCUSSION

The clinical severity of Hb H disease is known to be variable. There is evidence to show a more severe phenotype with non-deletional forms (–α\(^2\) 2) compared with deletional forms (–α\(^2\) 2),\(^3\)\(^4\)\(^16\)–\(^18\) which leads to the view that Hb H disease is not as benign a disorder as previously thought.\(^18\) Patients with non-deletional forms of Hb H may have significant anaemia, iron overload and multi-organ morbidity. An early and accurate diagnosis of Hb H disease is therefore warranted. Many methods for genetic diagnosis of α-thalassaemia are currently in use, including Southern blot analysis, direct nucleotide sequencing and reverse dot-blotting.\(^19\) However, these approaches are labour-intensive and time-consuming. With our diagnostic strategy (fig 1), more than 90% of Hb H disease in our population can be characterised.

Table 1 Primer sequences for α-thalassaemia multiplex gap-PCR and multiplex amplification refractory mutation system (ARMS) assay

<table>
<thead>
<tr>
<th>Allele detected</th>
<th>Name</th>
<th>Primer sequences (5' → 3')</th>
<th>Conc (μM)</th>
<th>Fragment (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-thalassaemia multiplex gap-PCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 3'UTR fragment</td>
<td>LSI1 (forward)</td>
<td>ATACCATGGTGACCCCCATGGAAGGCC</td>
<td>0.5</td>
<td>2350</td>
</tr>
<tr>
<td>(internal control)</td>
<td>LSI1 (reverse)</td>
<td>AAGGCTTATACGCTGACCC</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>–α(^2) 7</td>
<td>α(^2) 3.7 (forward)</td>
<td>CCGGTGCCGAACTGCAAGCC</td>
<td>0.2</td>
<td>2022/2029</td>
</tr>
<tr>
<td></td>
<td>α(^2) 3.7 (reverse)</td>
<td>AAAGACTCTAGGGTCCAGGG</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>α(^2) gene</td>
<td>α(^2) (forward)</td>
<td>AGACCAAGGAGGGCGCTG</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>α(^2) (reverse)</td>
<td>GOTTACCTCGTGGTCCTTCTCCTTCT</td>
<td>0.5</td>
<td>1628</td>
</tr>
<tr>
<td>–α SEA</td>
<td>SEA (forward)</td>
<td>CCGGTGAGCTTCTGTTTCTCTCTCTC</td>
<td>0.2</td>
<td>1349</td>
</tr>
<tr>
<td></td>
<td>SEA (reverse)</td>
<td>AGGCACCGTGTGTTGCTATGGC</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>α-thalassaemia multiplex ARMS assay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α2-globin gene fragment</td>
<td>ENG12 (forward)</td>
<td>GGATCCACGAGGCTGAGAAAG</td>
<td>0.294</td>
<td>930*</td>
</tr>
<tr>
<td>(internal control)</td>
<td>ENG21 (reverse)</td>
<td>GTAGAGATGGTCAGTTCCGATG</td>
<td>0.294</td>
<td></td>
</tr>
<tr>
<td>codon 30 (ΔGAG)</td>
<td>ARMSC30 (forward)</td>
<td>GTATGTTGGCCAGGGCCTGAG</td>
<td>0.074</td>
<td>772</td>
</tr>
<tr>
<td></td>
<td>BE17 (reverse)</td>
<td>CCATGGTGACATCCGCGAGGA</td>
<td>0.140</td>
<td></td>
</tr>
<tr>
<td>codon 125 (CTG→CCG)</td>
<td>ARMSC125 (forward)</td>
<td>CACCCCTGCGGGTGACGCTTCCACC</td>
<td>0.013</td>
<td>234</td>
</tr>
<tr>
<td>Hb Quong Sze</td>
<td>BE17 (reverse)</td>
<td>as above</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Termination codon (TAAT→CAA)</td>
<td>ARMSC142 (forward)</td>
<td>CGGTGCTGACCTCACAATGCGTC</td>
<td>0.096</td>
<td>184</td>
</tr>
<tr>
<td>Hb Constant Spring</td>
<td>BE17 (reverse)</td>
<td>as above</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

*This fragment migrates at ~1200 bp on non-denaturing polyacrylamide gels.
by performing only two multiplex PCRs, and direct sequencing is needed in <10% of cases. With adaptation to detect prevalent α-globin mutations in their localities, our approach should also be applicable in other South East Asian countries. This strategy can be further modified by including primers for the detection of the −−MED and −(α)20.5 double-gene deletions and becomes applicable in the Mediterranean area. However, this strategy may be less applicable in places like Cambodia or Papua New Guinea where access to fluorescent dye chemistry sequencing is much more limited.

Prenatal diagnosis for Hb H disease is not routinely performed as it is not generally regarded as a severe condition. Whether genetic risk prediction is indicated for a non-fatal disorder that is associated with significant morbidity, such as Hb H disease, will have to be considered in light of recent evidence of more severe forms of the disease, such as Hb H hydrops. However, current antenatal thalassaemia screening does not usually identify couples at risk of Hb H disease because −α2.2 or −α2.7 heterozygous carrier state cannot be reliably detected by phenotypic tests. Hence genetic counselling will not be offered even if Hb H disease is included as a target for screening.

The availability of a simple and effective α-thalassaemia genotyping strategy as proposed in the present study will greatly facilitate carrier detection and its potential use in antenatal screening, molecular characterisation of Hb H disease, genotype–phenotype correlation as well as longitudinal studies on the natural history of clearly defined deletional and non-deletional Hb H disease.

Figure 1 Strategy for genotypic diagnosis of Hb H disease by multiplex gap-PCR, multiplex ARMS-PCR and automated direct nucleotide sequencing of the amplified α2- and α1-globin genes.

Figure 2 Electrophoretic results of multiplex gap PCR products on 1% agarose gel in deletional Hb H disease.
since the patient harbours SEA deletion on the other chromosome 16.

![Figure 3](image_url)
Figure 3 Electrophoretic results of multiplex amplification refractory mutation system products on aqueous 8% polyacrylamide gel in non-deletional Hb H disease. Lane M is the 100 bp DNA size marker. The 930 bp internal control fragment migrates at \(-1200 \text{ bp on non-denaturing polyacrylamide gel. Lanes 1, 2 and 6 are positive for Hb CS. Lane 3 is positive for codon 30 (\[AGG(G)\]) while Hb QS, Hb QS and codon 30 (\[AGG(G)\]) were identified by single-tube multiplex amplification refractory mutation system (ARMS).}

Automated direct nucleotide sequencing of the amplified 2- and 1-globin genes was performed to characterise other non-deletional \(\alpha\)-thalassaemia determinants.

Based on two rapid diagnostic tests, namely multiplex gap-PCR and multiplex ARMS, \(\geq 90\%\) of the cases were genetically characterised. This laboratory strategy should be widely applicable for genetic diagnosis of \(\alpha\)-thalassaemia.

Take-home messages

- A total of 100 haemoglobin H (Hb H) disease patients in Hong Kong have been characterised at the DNA level.
- Single-tube multiplex gap-PCR was used to detect \(\alpha\)-SEA, \(\alpha\)-3.7 and \(\alpha\)-4.2, while Hb CS, Hb QS and codon 30 (\[AGG(G)\]) were identified by single-tube multiplex amplification refractory mutation system (ARMS).
- Automated direct nucleotide sequencing of the amplified 2- and 1-globin genes was performed to characterise other non-deletional \(\alpha\)-thalassaemia determinants.

Authors’ affiliations

A Y-Y Chan, C-C So, L-C Chan, Department of Pathology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, People’s Republic of China

E S-K Ma, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, People’s Republic of China

Funding: This work was funded by CRGC grant 10204405 from the University of Hong Kong, and a research grant from Queen Mary Hospital (TRAS 02-3 01/13/55).

Competing interests: None declared.

REFERENCES

