<table>
<thead>
<tr>
<th>Title</th>
<th>Lack of activated protein C resistance in healthy Hong Kong Chinese blood donors--correlation with absence of Arg506-Gln mutation of factor V gene.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chan, LC; Bourke, C; Lam, CK; Liu, HW; Brookes, S; Jenkins, V; Pasi, J</td>
</tr>
<tr>
<td>Citation</td>
<td>Thrombosis And Haemostasis, 1996, v. 75 n. 3, p. 522-523</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1996</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/57147</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; Thrombosis and Haemostasis. Copyright © Schattauer GmbH.; This article is not an exact copy of the original published article in Thrombosis and Haemostasis. The definitive publisher-authenticated version of Thrombosis and Haemostasis, 1996, v. 75 n. 3, p. 522-523 is available online at: http://www.thrombosis-online.com</td>
</tr>
</tbody>
</table>
Dahlbäck for the original APC-R assay: PPV = 69%, NPV = 99% (7). However, the use of home-made reagents has been reported as more reliable for screening than the commercial ones (6, 7).

Our results demonstrate that the modified test is a better screening test for the diagnosis of factor V Leiden than the original APC-R assay using the commercially available kit. It may be used not only for patients under oral anticoagulants but also in any patient. It appears to be very useful for the screening of factor V Leiden and to confirm molecular analysis. Furthermore, it may theoretically detect any abnormality of factor V responsible for APC-R, and possibly different from factor Leiden. However, the original APC-R assay might remain important in the biological investigation of thromboembolism disease, independently of factor V Leiden screening, as a global functional test of hypercoagulability affecting the protein C pathway (1, 7).

Marc Trossaërt, Jacqueline Conard, Marie Hélène Horellou, Ismail Elalamy, Meyer Michel Samama
From the Service d’Hématologie Biologique, Hôtel-Dieu, Paris, France

References

Received July 25, 1995 Accepted after resubmission November 30, 1995

Lack of Activated Protein C Resistance in Healthy Hong Kong Chinese Blood Donors – Correlation with Absence of Arg506-Gln Mutation of Factor V Gene

Dear Sir,

Recent advances in the understanding of the anticoagulant pathways have revealed deficiencies of antithrombin, Protein C, Protein S and activated protein C (APC) resistance as major risk factors for thrombosis and thromboembolism in the Caucasian population (1, 2). Of these factors, APC resistance due to a mutation Arg506-Gln of the Factor V gene is now recognised as the most common abnormality found in thrombotic patients and may itself account for more than one fifth of all cases of thrombophilia (3). In the general population, the reported prevalence rate of APC resistance is 5-7% (3, 4). Given the relatively low incidence of thromboembolism in the Chinese compared to the West (5, 6) which may reflect genetic or environmental factors e.g. diet or exercise, we were interested in the APC resistance prevalence rate in

Correspondence to: Dr. L. C. Chan, Haematology Section, Department of Pathology, Queen Mary Hospital, Hong Kong – FAX Number: +852 2817 7565

522
The local blood donor population. The results were compared with the blood donor population of Caucasians in the UK.

Two hundred and ninety-three healthy Hong Kong Chinese blood donors were tested for APC resistance. There were 177 males and 116 females, age 16-58 years (mean 26.5 years). The APC resistance test was performed using the Coatest APC resistance kit (Chromogenix AB, Sweden) on the ACL 3000R (Instrumentation Laboratory, Milan, Italy) or, in some cases, the Cobas FbRo. There was good correlation between the two instruments (correlation coefficient = 0.94). The APC sensitivity ratio was calculated by dividing the activated partial thromboplastin time (APTT) obtained with APC in the calcium chloride solution by that obtained using calcium chloride alone.

All Hong Kong Chinese blood donors had APC ratios above 2. The range was 2.2-5.1 (mean 3.2, SD 0.51). The lower limit of normal was set in a study of 301 healthy controls by Koster et al. (3) has been reported to be 2.17 (mean minus 1.96 SD).

In addition to the functional coagulation assay for APC resistance, analysis for the Arg 506-Gln mutation was performed on DNA extracted from peripheral blood buffy coat samples. A sequence of 267 bp of the factor V gene at Arg506 was amplified using primers as previously described (7). Following amplification, the DNA was restricted with 2 \mu M I (Stratagene) and subjected to agarose gel electrophoresis. The presence of the G to A mutation (nucleotide 1691) in the codon G Arg506 would result in loss of this restriction site. Samples were analysed in pools of 10, each pool sampling 50 ng genomic DNA to the pool. A duplicate pool which included 50 ng of a known heterozygote for the Arg 506-Gln mutation of factor V was run in parallel as a positive control. Mutation analysis was also performed on DNA extracted from 150 healthy Caucasian blood donors (age range 18-65 years).

The results from the PCR studies revealed, no patients in the Chinese group had the Arg 506-Gln mutation in Factor V. Six out of fifteen pools were positive for the Arg 506-Gln mutation in the Caucasian blood donor group. Previous studies in the UK population have revealed a prevalence of 3.5-5.6% (8, 9).

Our finding of a lack of APC resistance in Hong Kong Chinese blood donors may be the single most important factor to account for the low incidence of thromboembolism in the Chinese population. The recent observation that APC resistance is rare in the Japanese population (10) is of interest. Whether the gene defect is absent or rare in the Oriental population per se can be answered by similar studies in different geographical settings.

From the 1Haematology Section, Department of Pathology, University of Hong Kong; 2Hong Kong Red Cross Blood Transfusion Service, Hong Kong; 3Haemophilia Centre & Haemostasis Unit, Department of Haematology, Royal Free Hospital and School of Medicine, United Kingdom

Acknowledgements

We thank Mr. Stanley Ko and Mr. Cary So for excellent technical assistance and Ms Juliana Kwok for manuscript preparation.

References

Received July 28, 1995 Accepted after resubmission November 28, 1995

Warfarin Induced Skin Necrosis Associated with Activated Protein C Resistance

Dear Sir,

Warfarin induced skin necrosis (WISN) is a rare condition that has been described following warfarin treatment especially of patients with familial thrombophilia, such as deficiencies of protein C (1) and protein S (2). For most cases reported however no such association has been found (3). We describe a case of WISN in a patient with activated protein C resistance (APCR), the commonest cause of familial thrombophilia (4).

The 21 year old patient presented at the 12th week of pregnancy with a painful right leg and a clinical diagnosis of a DVT was made. No venogram was performed and she was treated with subcutaneous

Correspondence to: Dr. M. Makris, Royal Hallamshire Hospital, Dept Haematology, Glossop Road, Sheffield S10 2JF, UK – FAX Number: +44 114 275 61 26

523