<table>
<thead>
<tr>
<th>Title</th>
<th>Control of discrete linear repetitive processes with ℓ_∞ and $\ell_2 - \ell_\infty$ performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wu, L; Lam, J; Paszke, W; Gałkowski, K; Rogers, E</td>
</tr>
<tr>
<td>Citation</td>
<td>Proceedings Of The American Control Conference, 2007, p. 6091-6096</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2007</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/57144</td>
</tr>
<tr>
<td>Rights</td>
<td>©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Control of Discrete Linear Repetitive Processes with H_∞ and $\ell_2 - \ell_\infty$ Performance

Ligang Wu, James Lam Wojciech Paszke, Krzysztof Gałkowski, Eric Rogers

Abstract—This paper considers the control of discrete linear repetitive processes, which are a distinct class of two-dimensional (2-D) discrete linear systems, i.e. information propagation in two independent directions, which are of both system-theoretic and applications interest. In this paper we report new results on the design of control laws with guaranteed levels of performance. In particular, develop algorithms for the design of an H_∞ and $\ell_2-\ell_\infty$ dynamic output feedback controller which guarantees that the resulting controlled process is stable and has prescribed disturbance attenuation performance as measured by H_∞ and $\ell_2-\ell_\infty$ norms.

I. INTRODUCTION

The unique characteristic of a repetitive, or multipass, process is a series of sweeps, termed passes, through a set of dynamics defined over a fixed finite duration known as the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This, in turn, leads to the unique control problem for these processes in that the output sequence of pass profiles generated can contain oscillations that increase in amplitude in the pass-to-pass direction.

To introduce a formal definition, let $\alpha < +\infty$ denote the pass length (assumed constant). Then in a repetitive process the pass profile $y_k(p), 0 \leq p \leq \alpha - 1$, generated on pass k acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile $y_{k+1}(p), 0 \leq p \leq \alpha - 1, k \geq 0$. The source of the unique control problem then appears (if at all) in the output sequence generated in the form of the collection of pass profile vectors $\{y_k\}_k$.

Physical examples of repetitive processes include long-wall coal cutting and metal rolling operations (see, for example, the references cited in [10]). Also in recent years applications have arisen where adopting a repetitive process setting for analysis has distinct advantages over alternatives. Examples of these so-called algorithmic applications include classes of iterative learning control (ILC) schemes (see, for example, [4]) and iterative algorithms for solving nonlinear dynamic optimal control problems based on the maximum principle [9]. In the case of iterative learning control for the linear dynamics case, the stability theory for differential (and discrete) linear repetitive processes is one method which can be used to undertake a stability/convergence analysis of a powerful class of such algorithms and thereby produce vital design information concerning the trade-offs required between convergence and transient performance (see, for example, [5]).

Attempts to control these processes using standard (or 1D) systems theory/algorithms fail (except in a few very restrictive special cases) precisely because such an approach ignores their inherent 2D systems structure, i.e. information propagation occurs from pass-to-pass and along a given pass. Also the initial conditions are reset before the start of each new pass and the structure of these can be somewhat complex. For example, if they are an explicit function of points on the previous pass profile then this alone can destroy stability. In seeking a rigorous foundation on which to develop a control theory for these processes, it is natural to attempt to exploit structural links which exist between these processes and other classes of 2D linear systems.

The case of 2D discrete linear systems recursive in the positive quadrant $(i,j) : i \geq 0, j \geq 0$ (where i and j denote the directions of information propagation) has been the subject of much research effort over the years using, in the main, the well known Roesser and Fornasini Marchesini state-space models. More recently, productive research has been reported on H_∞ and H_2 approaches to analysis and controller design — see, for example, [12] and [1]. In general, this theory is not applicable to repetitive processes due to the fact that information propagation in one of the independent directions, along the pass, only occurs over a finite duration — the pass length. Also the boundary conditions are reset.
before the start of each new pass and, as noted above, the structure of these is crucial in terms of stability (and hence control law design).

In terms of control laws for repetitive processes, it is possible to use feedback control action on the current pass and/or feedforward control from the previous pass (or passes). The critical role of the previous pass profile dynamics means that current pass feedback control alone is not enough and it must be augmented by feedforward control. This approach has been the subject of significant research effort and results are beginning to emerge on how to undertake control law design in the presence of uncertainty. For example, [6], [8] give results on control law design in an H_{∞} setting. The control laws used in some of this work are based on the use of feedback of the current state vector which, of course, requires that all elements of this vector can be measured to allow control law implementation. Often, however, this assumption is not valid, since some of these elements cannot be measured for various reasons.

There are two commonly used methods to deal with the control design problem when state components are not accessible. One is to design a state observer to estimate the immeasurable state components, and synthesize an observer-based control law, the other is to design a controller which is only activated by pass profile (or output) information where such controllers are usually classified as either static or dynamic respectively.

Generally speaking, dynamic output feedback is the more flexible since the controller introduces additional dynamics. Also it is known that the problem of designing such control laws can be formulated as a convex optimization problem over LMIs [7], [11] and hence can be effectively computed using numerical optimization packages. This work also shows that there are two complementary approaches to problem formulation. These are the well known variables elimination procedure and using linearizing variables transforms, respectively.

This latter approach provides a general framework to formulate synthesis problems as a convex optimization problem involving LMIs. It is based on applying specific invertible transforms of the controller parameters to achieve LMI conditions in terms of the new set of variables. When the resulted LMIs have a solution, the controller parameters can be computed by applying inverse transforms. This approach becomes less computationally effective as the number of decision variables increases and hence elimination of some decision variables can be still required, but these can only be applied to the specific structures of underlying matrix inequalities. The known results on designing a so-called H_{∞} dynamic pass profile controller are based on variables elimination method, see [7].

Based on the above, it can be concluded that there is a clear need to investigate alternative design algorithms based on linearizing variables transform method, with the overall aim of providing a general set of control law/controller design tools for the designer to choose the most appropriate to the the particular application under consideration. Moreover, to-date only H_{∞} and H_2 (and mixed H_2/H_{∞}) settings have been considered but there are alternatives to deal, for example, with the case when there is only partial information available on the noise corruption present. Here we develop significant new results in this direction with $\ell_2-\ell_\infty$ performance included. In particular, we extend the results of [7], to the design of H_{∞} and $\ell_2-\ell_\infty$ dynamic output feedback control for discrete linear repetitive processes to guarantee stability and have H_{∞} and an $\ell_2-\ell_\infty$ disturbance attenuation respectively. Sufficient conditions for the existence of such dynamic output feedback controllers are established in the strict LMI form, which can be readily solved using standard numerical software [2].

Throughout this paper, the null matrix and the identity matrix with appropriate dimensions are denoted by 0 and I, respectively. Moreover, $M > 0$ (respectively, ≥ 0) denotes a real symmetric positive definite (respectively, semi-definite) matrix. Similarly, $M < 0$ (respectively, ≤ 0) denotes a real symmetric negative definite (respectively, semi-definite) matrix. We also require the signal space $\ell_2 \{[0, \infty), [0, \infty]\}$, i.e. the space of square summable sequences on $\{[0, \infty), [0, \infty]\}$ with values in \mathbb{R}^n.

II. H_{∞} AND $\ell_2-\ell_\infty$ PERFORMANCE

A. Process Description and Preliminaries

As essential background for the rest of this paper, we in this section what is meant by H_{∞} and $\ell_2-\ell_\infty$ performances for discrete linear repetitive processes described by the following state-space model over $0 \leq p \leq \alpha$, $k \geq 0$,

$$x_{k+1}(p+1) = Ax_{k+1}(p) + B_0 y_k(p) + B_1 \omega_{k+1}(p)$$

$$y_{k+1}(p) = Cx_{k+1}(p) + D_0 y_k(p) + D_1 \omega_{k+1}(p)$$

(1)

where on pass k, $x_k(p) \in \mathbb{R}^n$ is the state vector; $y_k(p) \in \mathbb{R}^m$ is the pass profile vector; $\omega_k(p) \in \mathbb{R}^l$ is the disturbance vector which belongs to $\ell_2 \{[0, \infty), [0, \infty]\}$; A, B_0, B_1, C, D_0 and D_1 are real constant matrices. The current pass state ($x_k(p)$) and pass profile ($y_k(p)$) may not be fully accessible. Hence consider the control (and estimation) in such cases based on the assumed available measured output signal vector given by

$$v_{k+1}(p) = Ex_{k+1}(p) + F_0 y_k(p) + F_1 \omega_{k+1}(p)$$

(2)

where $v_k(p) \in \mathbb{R}^r$ and E, F_0 and F_1 are real constant matrices. The controlled output signal is given by

$$z_{k+1}(p) = Gx_{k+1}(p) + H_0 y_k(p)$$

(3)
where \(z_k(p) \in \mathbb{R}^q \), \(G \) and \(H_0 \) are real constant matrices.

To complete the process description, it is necessary to specify the boundary conditions, that is, the state initial vector on each pass and the initial pass profile (that is, on pass 0). Here we consider the case when

\[
x_{k+1}(0) = d_{k+1}, \quad k \geq 0
\]

\[
y_0(p) = f(p)
\]

(4)

where \(d_{k+1} \in \mathbb{R}^m \) has known constant entries and \(f(p) \in \mathbb{R}^m \) is an vector whose entries are known functions of \(p \) over \([0, \alpha]\).

This state space model allows for disturbances which affect both the state and pass profile dynamics on each pass. The stability theory [10] for linear repetitive processes is based on an abstract model in a Banach space setting which includes a wide range of such processes as special cases, including those described by (1). In terms of their dynamics it is the pass-to-pass coupling (noting again the unique control problem for them) which is critical. This is of the form \(y_{k+1} = L_\alpha y_k \), where \(y_k \in E_\alpha \) (\(E_\alpha \) a Banach space with norm \(\| \cdot \| \)) and \(L_\alpha \) is a bounded linear operator mapping \(E_\alpha \) into itself. Two concepts of stability can be defined but in general it is the stronger of these, so-called stability along the pass which is required. This holds if, and only if there exist numbers \(M_\infty > 0 \) and \(\lambda_\infty \in (0, 1) \) independent of \(\alpha \) such that \(\| L_\alpha^k \| \leq M_\infty \lambda_\infty^k, \quad k \geq 0 \) (where \(\| \cdot \| \) also denotes the induced operator norm) and can be interpreted as bounded-input bounded-output stability independent of the pass length. Note also that stability along the pass can be analyzed mathematically by letting \(\alpha \to \infty \) and we make no further explicit reference to this fact for the remainder of this paper.

For the processes considered here, there are a wide range of stability along the pass tests which could be employed. Here, however, we use the following LMI based condition [3] since, see also below, it leads immediately to algorithms for control law design — a feature which is not present in alternatives.

Lemma 1: A discrete linear repetitive process described by (1) and (4) is stable along the pass if there \(\exists \) matrix \(W = \text{diag} \{ W_1, W_2 \} > 0 \) such that the following LMI holds

\[
\begin{bmatrix}
-W & M^T W \\
* & -W
\end{bmatrix} < 0
\]

(5)

where \(M = \begin{bmatrix} A & B_0 \\ C & D_0 \end{bmatrix} \).

To assess the performance of the controlled process under the \(\mathcal{H}_\infty \) and \(\ell_2-\ell_\infty \) measures, we introduce the following definition. From this point onwards assume zero boundary conditions and make no further explicit reference to them.

Definition 1: A discrete linear repetitive process described by (1) and (4) is said to have \(\mathcal{H}_\infty \) (or \(\ell_2-\ell_\infty \)) performance level \(\gamma_{2,\infty} > 0 \) (or \(\gamma_{2,\infty} > 0 \)), and for all nonzero \(\omega_{k+1}(p) \in L_2([0, \infty), [0, \infty]) \), we have

\[
\| z_{k+1}(p) \|_{2,\infty} < \gamma_{2,\infty} \| \omega_{k+1}(p) \|_{2,\infty} \quad (\gamma_{2,\infty} > 0)
\]

(6)

\(\mathcal{H}_\infty \) performance, and for \(\ell_2-\ell_\infty \) performance, we have

\[
\| z_{k+1}(p) \|_{\infty,\infty} < \gamma_{2,\infty} \| \omega_{k+1}(p) \|_{2,\infty} \quad (\gamma_{2,\infty} > 0)
\]

(7)

where

\[
\| f_k(p) \|_{2,\infty} := \sqrt{\sum_{k=0}^{\infty} \sum_{p=0}^{\infty} f_k(p)^T f_k(p)}
\]

\[
\| f_k(p) \|_{\infty,\infty} := \sup_{k,p} f_k(p)^T f_k(p)
\]

and \(\gamma_{2,\infty}, \gamma_{2,\infty} \) are given real positive scalars.

B. \(\mathcal{H}_\infty \) Performance

Here we consider \(\mathcal{H}_\infty \) performance for discrete linear repetitive process, for which the following result is developed.

Theorem 1: A discrete linear repetitive process described by (1) is stable along the pass with an \(\mathcal{H}_\infty \) performance level \(\gamma_{2,\infty} > 0 \) if there exist matrices \(P > 0 \) and \(Q > 0 \) such that the following LMI holds

\[
\begin{bmatrix}
-P & 0 & A^T P & C^T Q & G^T \\
* & -Q & B_1^T P & D_1^T Q & H_0^T \\
* & * & -I & 0 & 0 \\
* & * & * & -Q & 0 \\
* & * & * & * & -I
\end{bmatrix} < 0
\]

(8)

Proof: To establish the stability along the pass, consider the following candidate Lyapunov function

\[
V(k, p) = V_1(p, k) + V_2(k, p)
\]

\[
= x_{k+1}^T(p) P_{x_{k+1}}(p) + y_k^T(p) Q y_k(p)
\]

(9)

where \(P > 0 \) and \(Q > 0 \) with increment

\[
\Delta V(k, p) = \Delta V_1(p, k) + \Delta V_2(k, p)
\]

\[
= x_{k+1}^T(p+1) P_{x_{k+1}}(p+1)
\]

\[
- x_{k+1}^T(p) P_{x_{k+1}}(p)
\]

\[
+ y_k^T(p) Q y_k(p) - y_k^T(p) Q y_k(p)
\]

(10)

Substitution from the plant state-space model (noting that stability along the pass is independent of the disturbance terms and hence they can be set equal to zero) following by some routine manipulation and an application of the Schur’s formula then yields the LMI condition of (8).

To establish the \(\mathcal{H}_\infty \) performance, the route is to consider the following performance index

\[
J := \| z_{k+1}(p) \|^2_{2,\alpha} - \gamma_{2,\infty}^2 \| \omega_{k+1}(p) \|^2_{2,\alpha}
\]

(11)
It can be shown that
\[J < \sum_{k=0}^{\infty} \sum_{p=0}^{\alpha} \eta_k^T(p) \Pi \eta_k(p) \]
(12)
where \(\eta_k(p) \triangleq [x_{k+1}^T(p) \ y_{k+1}^T(p) \ \omega_{k+1}^T(p)]^T \), and
\[\Pi \triangleq \begin{bmatrix} -P & 0 & 0 \\ * & -Q & 0 \\ * & * & -\gamma^2 I \end{bmatrix} + \begin{bmatrix} A^T \\ B_0^T \\ B_1^T \end{bmatrix} \begin{bmatrix} A \\ B_0 \\ B_1 \end{bmatrix}^T \\
+C^T \begin{bmatrix} D_0^T \\ D_0^T + D_1^T \end{bmatrix} + \begin{bmatrix} G^T \\ H_0^T \end{bmatrix} \begin{bmatrix} G^T \\ H_0^T \end{bmatrix}^T \] < 0.
Further transformation complete the proof.

C. \(\ell_2-\ell_\infty \) Performance

Here we consider \(\ell_2-\ell_\infty \) performance for discrete linear repetitive process, for which the following result is developed.

Theorem 2: A discrete linear repetitive process described by (1) is stable along the pass with an \(\ell_2-\ell_\infty \) performance level \(\gamma_{2,\infty} > 0 \) if there exist matrices \(P > 0 \) and \(Q > 0 \) such that the following LMIs hold
\[
\begin{bmatrix}
-\gamma^2 & 0 & 0 & A^T P C^T Q \\
* & -Q & 0 & B_0^T P D_0^T Q \\
* & * & -I & B_1^T P D_1^T Q \\
* & * & * & -Q \\
P & 0 & G^T & H_0^T \\
* & Q & H_0^T & 0 \\
* & * & \gamma^2_{2,\infty} I
\end{bmatrix} < 0
\]
(13)

Proof: Stability along the pass is established as in the previous result. The performance level is established by considering the performance index
\[I = V(k, p) - \sum_{s=0}^{\infty} \sum_{\beta=0}^{\alpha} \omega_{s+1}(\beta) \omega_{s+1}(\beta) \]
(15)

Note 1: Repetitive processes are defined over the finite pass length \(\alpha \), and in practice the process will only complete a finite number of passes, say, \(N \). Hence the corresponding cost function in this last result should be evaluated as
\[I = V(k, p) - \sum_{s=0}^{k-1} \sum_{\beta=0}^{p-1} \omega_{s+1}(\beta) \omega_{s+1}(\beta) \]
(16)

However, it is routine to argue that the signals involved can be extended from \([0, \alpha]\) to the infinite interval in such a way that projection of the infinite interval solution onto the finite interval is possible. Likewise from the infinite set to \([0, N]\), and hence we will work with (15).

III. DYNAMIC OUTPUT FEEDBACK CONTROL

A. Problem Formulation

The processes considered here are described by the model of (1) augmented by control input terms, i.e.
\[x_{k+1}(p+1) = Ax_{k+1}(p) + Bu_{k+1}(p) + B_0 u_k(p) + B_1 \omega_{k+1}(p) \]
\[y_{k+1}(p) = Cx_{k+1}(p) + Du_{k+1}(p) + D_0 u_k(p) + D_1 \omega_{k+1}(p) \]
(17)
where on pass \(k \), \(u_k(p) \in \mathbb{R}^n \) is the control input vector and \(B \) and \(D \) are real constant matrices.

Here, we are interested in designing a full-order dynamic output feedback controller of general structure described by

\[\varphi_{k+1}(p+1) = A_c \varphi_{k+1}(p) + B_0 c \phi_k(p) + B_c \zeta_{k+1}(p) \]
\[\phi_{k+1}(p) = C_c \varphi_{k+1}(p) + D_0 c \phi_k(p) + D_c \zeta_{k+1}(p) \]
\[u_{k+1}(p) = G_c \varphi_{k+1}(p) + H_0 c \phi_k(p) + H_c \zeta_k(p) \]
(18)

where on pass \(k \), \(\varphi_k(p) \in \mathbb{R}^n \) is the state vector of controller, \(\phi_k(p) \in \mathbb{R}^m \) is the pass profile vector, and \(A_c, B_0 c, B_c, C_c, D_0 c, D_c, G_c, H_0 c \) and \(H_c \) are appropriately dimensioned constant matrices to be determined. Now, augmenting the model of (17) to include the states of dynamic output feedback controller of (18) and considering (2)–(3), we obtain the following closed-loop process

\[
\begin{align*}
\xi_{k+1}(p+1) &= \tilde{A} \xi_{k+1}(p) + \tilde{B}_0 \zeta_k(p) + \tilde{B}_1 \omega_{k+1}(p) \\
\zeta_{k+1}(p) &= \tilde{C} \xi_{k+1}(p) + \tilde{D}_0 \zeta_k(p) + \tilde{D}_1 \omega_{k+1}(p) \\
v_{k+1}(p) &= G_c \xi_{k+1}(p) + \tilde{H}_0 \zeta_k(p)
\end{align*}
\]
(19)

where \(\xi_{k+1}(p) \triangleq [x_{k+1}^T(p) \ \varphi_{k+1}^T(p)]^T \) and
\[
\tilde{A} \triangleq \begin{bmatrix} A + BH_c E & BG_c \\ B_c E & A_c \end{bmatrix}, \quad \tilde{C} \triangleq \begin{bmatrix} C + DH_c E & DG_c \\ D_c E & C_c \end{bmatrix}
\]
\[
\tilde{B}_0 \triangleq \begin{bmatrix} B_0 + BH_c F_0 & BH_c D_0 c \\ B_c F_0 & B_c \end{bmatrix}, \quad \tilde{B}_1 \triangleq \begin{bmatrix} B_1 + BH_c F_1 \\ B_c F_1 \end{bmatrix}
\]
\[
\tilde{D}_0 \triangleq \begin{bmatrix} D_0 + DH_c F_0 & DH_c D_0 c \\ D_c F_0 & D_c \end{bmatrix}, \quad \tilde{D}_1 \triangleq \begin{bmatrix} D_1 + DH_c F_1 \\ D_c F_1 \end{bmatrix}
\]
\[
\tilde{G} \triangleq \begin{bmatrix} G \\ H_0 \end{bmatrix}, \quad \tilde{H}_0 \triangleq \begin{bmatrix} H_0 \\ 0 \end{bmatrix}
\]

The problem considered in this section now is: design a controller of the form (18) with either \(\mathcal{H}_\infty \) or \(\ell_2-\ell_\infty \) performance subject to the following two requirements:

1) The controlled process is stable along the pass;
2) The controlled process has disturbance attenuation level \(\gamma_{2,2} \) in an \(\mathcal{H}_\infty \) (or level \(\gamma_{2,\infty} \) in an \(\ell_2-\ell_\infty \) sense. In particular, for all nonzero \(\omega_{k+1}(p) \in \ell_2 \left([0, \infty); [0, \infty)\right) \), (6) holds for the \(\mathcal{H}_\infty \) case and (7) for \(\ell_2-\ell_\infty \).
B. \mathcal{H}_∞ Dynamic Output Feedback Control Design

The following result for stability along the pass of the controlled process is obtained from interpreting Theorem 1 in terms of (19).

Theorem 3: Consider the discrete linear repetitive processes in (1), and let $\gamma_{2,2} > 0$ be a prescribed scalar. There exists a full-order dynamic output feedback controller in the form of (18) such that the closed-loop process (19) is stable along the pass and (6) is satisfied if there exist matrices $\mathcal{P} > 0$, $\mathcal{R} > 0$, $\mathcal{Q} > 0$, $S > 0$, \mathcal{A}_c, \mathcal{B}_c, \mathcal{C}_c, \mathcal{D}_c, \mathcal{G}_c, \mathcal{H}_{0c} and \mathcal{H}_c such that the following LMI holds:

$$
\begin{bmatrix}
-\mathcal{P} & -I & 0 & 0 & 0 & (PA + B_d E)^T \\
-\mathcal{R} & 0 & 0 & 0 & \mathcal{A}_c^T \\
-\mathcal{Q} & -I & 0 & (PB_0 + B_0 F_0)^T \\
-\mathcal{S} & 0 & B_0^T \\
-\gamma_{2,2}^2 I & (PB_1 + B_1 F_1)^T \\
-\mathcal{P} & -I & 0 & 0 & 0 & (PA + B_d E)^T \\
-\mathcal{R} & 0 & 0 & 0 & \mathcal{A}_c^T \\
-\mathcal{Q} & -I & 0 & (PB_0 + B_0 F_0)^T \\
-\mathcal{S} & 0 & B_0^T \\
-\gamma_{2,2}^2 I & (PB_1 + B_1 F_1)^T \\
-\gamma_{2,2}^2 I & (PB_1 + B_1 F_1)^T
\end{bmatrix} < 0
$$

(20)

where

$$
\begin{align*}
\mathcal{T}_{19} &= (C + D \mathcal{H}_c E)^T, \\
\mathcal{T}_{29} &= (C^\top R + DG_c)^T, \\
\mathcal{T}_{39} &= (D_0 + D \mathcal{H}_c F_0)^T, \\
\mathcal{T}_{49} &= (D_0 S + D \mathcal{H}_0 c)^T, \\
\mathcal{T}_{59} &= (D_1 + D \mathcal{H}_c F_1)^T.
\end{align*}
$$

Moreover, a desired \mathcal{H}_∞ dynamic output feedback controller can be found by solving the following equations:

$$
\begin{align*}
\mathcal{H}_c &\triangleq H_c, \\
\mathcal{H}_{0c} &\triangleq H_c F_0 S + H_{0c} S_{12}^T, \\
\mathcal{G}_c &\triangleq H_c E R + G_c R_{12}, \\
\mathcal{D}_c &\triangleq Q D H_c + Q_{12} D_c, \\
\mathcal{B}_c &\triangleq P B H_c + P_1 B_c, \\
\mathcal{D}_{0c} &\triangleq Q (D_0 + D H_c F_0) S + Q_{12} D_c F_0 S \\
&\quad + Q D H_{0c} S_{12} + Q_{12} D_{0c} S_{12}, \\
\mathcal{C}_c &\triangleq Q (C + D H_c E) R + Q_{12} D_c E R \\
&\quad + Q D G_c R_{12} + Q_{12} C_c R_{12}, \\
\mathcal{B}_{0c} &\triangleq P (B_0 + B H_c F_0) S + P_1 B_c F_0 S \\
&\quad + P B H_{0c} S_{12} + P_{12} B_{0c} S_{12}, \\
\mathcal{A}_c &\triangleq P (A + B H_c E) R + P_1 B_c E R \\
&\quad + P B G_c R_{12} + P_{12} A_c R_{12}.
\end{align*}
$$

(21)

Proof: The proof is based on the stability along the pass with an \mathcal{H}_∞ performance for the closed-loop process.

C. $\ell_2-\ell_\infty$ Dynamic Output Feedback Control

In a similar manner to the \mathcal{H}_∞ case, the following result can be established using, in effect, the arguments required in the proof of Theorem 2.

Theorem 4: Consider the discrete linear repetitive processes in (1), and let $\gamma_{2,\infty} > 0$ be a prescribed scalar. There exists a full-order dynamic output feedback controller in the form of (18) such that the closed-loop process (19) is stable along the pass and (7) is satisfied if there exist matrices $\mathcal{P} > 0$, $\mathcal{R} > 0$, $\mathcal{Q} > 0$, $S > 0$, \mathcal{A}_c, \mathcal{B}_c, \mathcal{C}_c, \mathcal{D}_c, \mathcal{G}_c, \mathcal{H}_{0c} and \mathcal{H}_c such that the following LMIs hold:

$$
\begin{bmatrix}
-\mathcal{P} & -I & 0 & 0 & 0 & (PA + B_d E)^T \\
-\mathcal{R} & 0 & 0 & 0 & \mathcal{A}_c^T \\
-\mathcal{Q} & -I & 0 & (PB_0 + B_0 F_0)^T \\
-\mathcal{S} & 0 & B_0^T \\
-\gamma_{2,\infty}^2 I & (PB_1 + B_1 F_1)^T \\
-\mathcal{P} & -I & 0 & 0 & 0 & (PA + B_d E)^T \\
-\mathcal{R} & 0 & 0 & 0 & \mathcal{A}_c^T \\
-\mathcal{Q} & -I & 0 & (PB_0 + B_0 F_0)^T \\
-\mathcal{S} & 0 & B_0^T \\
-\gamma_{2,\infty}^2 I & (PB_1 + B_1 F_1)^T \\
-\gamma_{2,\infty}^2 I & (PB_1 + B_1 F_1)^T
\end{bmatrix} < 0
$$

(23)

where

$$
\begin{align*}
\mathcal{T}_{19} &= (C + D \mathcal{H}_c E)^T, \\
\mathcal{T}_{29} &= (C^\top R + DG_c)^T, \\
\mathcal{T}_{39} &= (D_0 + D \mathcal{H}_c F_0)^T, \\
\mathcal{T}_{49} &= (D_0 S + D \mathcal{H}_0 c)^T, \\
\mathcal{T}_{59} &= (D_1 + D \mathcal{H}_c F_1)^T.
\end{align*}
$$

(24)

Moreover, a desired $\ell_2-\ell_\infty$ dynamic output feedback controller can be computed from (22).

Proof: The proof again is based on the exploiting the requirement that the closed-loop process in (19) is stable along the pass with an $\ell_2-\ell_\infty$ performance level $\gamma_{2,\infty} > 0$.

IV. CONCLUSION

In this paper, the problems of robust \mathcal{H}_∞ and $\ell_2-\ell_\infty$ based controllers for discrete linear repetitive processes have been investigated. Sufficient conditions have been developed for the existence of such controllers to guarantee stability along the pass and prescribed \mathcal{H}_∞ and $\ell_2-\ell_\infty$ performance.
REFERENCES

