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Abstract

A unified likelihood-based approach is proposed to estimate population
size for a continuous-time closed capture-recapture experiment with frailty.
The frailty model allows the capture intensity to vary with individual het-
erogeneity, time and behavioral response. The individual heterogeneity effect
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tensities are assumed to be in constant proportion but may otherwise vary
arbitrarily through time. The approach is also extended to capture-recapture
experiments with possible random removals. Simulation studies are conducted
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1 Introduction

Population size estimation is an important procedure in many fields, such as ecology,

epidemiology and software reliability (Pollock, 1991). Capture-recapture method is

often used to estimate population size (Otis et al.,1978). In capture-recapture exper-

iments, there are three major sources of variation in the catchability of individuals:

heterogeneity among individuals; time variation; and behavioral response to capture.

The models considered are classified according to these three factors, and are re-

ferred to as Mh, Mt, Mb, Mht, Mhb, Mtb and Mhtb, where the subscript “h”, “t”,

“b” denote “heterogeneity”, “time-varying” and “behavioral-response” respectively.

The models with heterogeneity are the most challenging.

In capture-recapture experiments, capture efforts may be made at a limited number

of occasions or on a continuous basis. We refer to these two settings as discrete-time

and continuous-time respectively. In discrete-time settings, the above models and

corresponding estimation methods have been fully developed, and a wide variety of

parametric and nonparametric approaches have been applied to estimate population

size (Chao, 2001). Compared with discrete-time models, there has been relatively

little published research for the continuous-time counterparts. Earlier work includes

the papers by Craig (1953) and Darroch (1958) for a homogeneous population.

Becker (1984) and Yip, Fong & Wilson (1993) have established a counting process

framework to study capture-recapture experiment in continuous time. Assume there

are ν independent individuals, indexed by 1, 2, . . . , ν. We also assume that the

capture-recapture experiment period [0, τ ] (where τ denotes the duration of the

experiment) is relatively short so that the population size remains constant over the

course of the experiment. Let Ni (t) denote the number of times the ith individual
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has been caught in [0, t] . Each {Ni (t) ; 0 ≤ t ≤ τ} is a continuous-time counting

process with an intensity λi (t). The intensity for the ith individual, λi(t), is defined

by λi(t)dt = Pr(dNi(t) = 1 | Ft−), where Ft− denotes the capture history up to time

t but not including t.

A multiplicative form of the most general model Mhtb is given by

λi(t) = βγi φ
ri(t)λ0(t) (1)

where ri(t) = I(Ni(t) > 0), i.e. a capture indicator: it is zero until the ith individual

is first captured, and 1 after the ith individual is captured; λ0(t) is an arbitrary

non-negative time-varying function in [0, τ ]; γ1, . . . , γν and φ are positive values,

representing the effects of heterogeneity and behavioral response respectively; and

β represents an overall capture intensity.

To avoid identifiability problems, we assume that in each case the parameter reverts

to unity in the case of homogeneity. Thus in the homogeneous case φ = 1; and the

capture intensity λ0(t) is assumed to have average value 1. Further, we assume the

heterogeneity effects {γ1, . . . , γν} to be sampled from a gamma distribution with

mean 1: γi
d
= Ga(α, α). The case γ = 1 represents homogeneity; and so departure

of γi from 1 indicates departure from the average population behavior. The extent

of the population heterogeneity is indicated by α, since var(γi) = 1/α.

All sub-models Mht, Mhb, Mtb, Mh, Mt Mb and M0 are seen to be a particular

case of (1), i.e.

Model Mht : λi(t) = βγiλ0(t);

Model Mhb : λi(t) = βγi φ
ri(t);

Model Mtb : λi(t) = βφri(t)λ0(t);
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Model Mh : λi(t) = βγi;

Model Mt : λi(t) = βλ0(t);

Model Mb : λi(t) = βφri(t);

Model M0 : λi(t) = β.

For the models without heterogeneity (i.e. Mtb, Mt, Mb), the relevant estimation

procedures are well developed; see Chao (2001). However, heterogeneity among the

individuals remains the most difficult part in estimating population size. Becker

(1984) developed a martingale estimator for model Mht where {γ1, . . . , γν} are as-

sumed to be sampled from a gamma distribution. However, this procedure can result

in negative estimates, which motivated Chao & Lee (1993) and Yip & Chao (1996)

to derive new estimators for model Mht using the sample coverage and estimating

function approach in which {γ1, . . . , γν} are regarded as fixed parameters. There

have been no estimators given in the literature for models Mhb and Mhtb.

This paper proposes a unified likelihood-based approach to estimate the population

size ν for models Mh, Mht, Mhb, Mhtb, where the heterogeneity effects {γ1, . . . , γν}

are assumed to be sampled from a gamma distribution, i.e. the so-called frailty

model (Andersen et al., 1993, Chapter 9). The estimators of ν for model Mh and

model Mht are found to be the same and not depend on the capture times. The

proposed approach is also easily extended to capture-recapture experiments with

possible random removals. We compare the proposed models and approach with

the corresponding discrete-time models and the existing discrete-type estimators.

For a homogeneous population the gain on the continuous-time models is marginal,

whereas for a heterogeneous population, the gain is significant.

In Section 2, the estimation procedures are presented. In Section 3, simulation
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studies are conducted to examine the performance of the proposed estimators. In

Section 4, the advantage of the proposed continuous-time models and approach

are investigated by simulation study and asymptotic efficiency in comparison with

the corresponding discrete-time models and existing discrete-type estimators. The

circumstance in which the proposed methods have some application is recommended.

2 Estimation procedures

Let n denote the number of distinct individuals captured over the course of the

experiment. Without loss of generality, label the captured individuals as 1, 2, . . . , n,

and those uncaptured as n+1, n+2, . . . , ν. Let mi = Ni(τ) denote the total number

of times the ith individual has been caught, and if mi > 0, denote the capture times

as ti1, . . . , timi
. Let N(t) =

ν∑
i=1

Ni(t) denote the total number of captures by time t.

2.1 Model Mhtb

For model Mhtb, we have λi(t) = βγi φ
ri(t)λ0(t), where γi

d
= Ga(α, α). However, for

convenience of derivation, we reparameterize the model as follows:

λi(t) = ρi φ
ri(t)ω(t)

where ρi
d
= Ga(α, 1) and ω(t) is an arbitrary non-negative time-varying function.

For the ith individual, given ρi, when mi > 0, the likelihood function is proportional

to

ρi ω(ti1) e−ρiΩ(ti1)

( mi∏
j=2

φρiω(tij)

)
e−ρiφ(Ω(τ)−Ω(ti1))

=

( mi∏
j=1

ω(tij)

)
ρmi

i φmi−1 e−ρi

(
Ω(ti1)+φ(Ω(τ)−Ω(ti1))

)
,
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where Ω(t) =
∫ t

0
ω(u)du denotes the cumulative intensity function; and Ω(τ) is the

value of Ω at termination τ ; see Andersen et al. (1993). We define Ω∗
i = φΩ(τ)+(1−

φ)Ω(ti1). Then, since ρi
d
= Ga(α, 1), the likelihood function for the ith individual is

given by

Li ∝
∫ ∞

0

( mi∏
j=1

ω(tij)

)
ρmi

i φmi−1 e−ρiΩ
∗
i

ρα−1
i e−ρi

Γ(α)
dρi

=

( mi∏
j=1

ω(tij)

)
φmi−1 α[mi]

(1 + Ω∗
i )

α+mi
, i = 1, . . . , n; (2)

where x[k] = x(x + 1) · · · (x + k− 1). For those individuals uncaptured in the whole

experiment, all the likelihood functions are same, equal to (1+Ω(τ))−α, and denoted

by L0.

Therefore, the likelihood function based on the capture history is given by

L(ν, α, φ, Ω) ∝ ν!

(ν − n)!

( n∏
i=1

Li

)
Lν−n

0

=
ν!

(ν − n)!

n∏
i=1

(( mi∏
j=1

ω(tij)
)

φmi−1 α[mi]

(1 + Ω∗
i )

α+mi

)(
1

1 + Ω(τ)

)α(ν−n)

.

And the log-likelihood function is given by:

log L(ν, α, φ, Ω) = k +
n∑

i=1

log(ν − i + 1) +
n∑

i=1

mi∑
j=1

ω(tij)− α(ν − n) log(1+Ω(τ))

+
n∑

i=1

(
(mi−1) log φ− (α+mi) log(1 + Ω∗

i ) +

mi∑
j=1

log(α + j − 1)

)
.

Taking derivatives of the log-likelihood function with respect to ν, α and φ and

equating them to zero, gives

∂ log L

∂ν
=

n∑
i=1

1

ν−i+1
− α log(1+Ω(τ)) = 0, (3)

∂ log L

∂α
=

n∑
i=1

mi∑
j=1

1

α+j−1
−

n∑
i=1

log(1+Ω∗
i )− (ν−n) log

(
1+Ω(τ)

)
= 0, (4)
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∂ log L

∂φ
=

Z − n

φ
−

n∑
i=1

(α + mi)(Ω(τ)− Ω(ti1))

1 + Ω∗
i

= 0, (5)

where Z =
∑ν

i=1 mi. As for Ω, following the approach of Andersen et al. (1993,

Section IV.1.5), we use the MLE here in the broad sense of Kiefer & Wolfowitz

(1956). To maximize the likelihood, Ω must be a jump function with jumps at the

observed capture times only. Assume Ω has a jump θk at t(k), where t(1) < · · · < t(d)

denotes the ordered distinct capture times. More precisely

Ω(t) =
d∑

k=1

θk I(t(k) ≤ t).

Substituting this expression into the log-likelihood function and taking derivatives

with respect to θk (k = 1, . . . , d) gives

∂ log L

∂θk

=
dN(t(k))

θk

−
n∑

i=1

(α + mi) φξi(t(k))

1 + Ω∗
i

− α(ν − n)

1 + Ω(τ)
, (6)

where ξi (t) = I(ti1 < t). Equating this derivative to zero, gives the equation

θk =

{ n∑
i=1

(α + mi) φξi(t(k))

1 + Ω∗
i

+
α(ν − n)

1 + Ω(τ)

}−1

dN(t(k)) (7)

for k = 1, . . . , d. For uncaptured individuals, let ξi (t) = 0 and Ω∗
i = Ω(τ), then (7)

can be written as

dΩ(t) =

{ ν∑
i=1

(α + mi) φξi(t)

1 + Ω∗
i

}−1

dN(t). (8)

Given ρ1, ρ2, . . . , ρν , the Nelson-Aalen estimator of dΩ(t) in this case would be

dΩ(t) =

{ ν∑
i=1

ρiφ
ξi(t)

}−1

dN(t);

see Nelson (1972) and Aalen (1978). The expression (8) corresponds to this Nelson-

Aalen estimating equation but with ρi replaced by the posterior expectation E(ρi | F (i)
τ ),

where F (i)
τ is the capture history up to time τ for the ith individual. The posterior
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distribution for ρi is given by

π(ρi | F (i)
τ ) ∝ L(F (i)

τ | ρi) π(ρi)

∝
( mi∏

j=1

ω(tij)
)

ρmi
i φmi−1 e−ρiΩ

∗
i

ρα−1
i e−ρi

Γ(α)

∝ ρα+mi−1
i e−(1+Ω∗i )ρi

that is, ρi | F (i)
τ

d
= Ga(α + mi, 1 + Ω∗

i ). Therefore

E(ρi | F (i)
τ ) =

α + mi

1 + Ω∗
i

.

The maximum likelihood estimates ν̂, α̂, φ̂, θ̂1, . . . , θ̂d can be obtained by solving

the equations (3), (4), (5) and (7). We solve the equations by iteration: let Ψ =

(ν̂, α̂, φ̂, θ̂1, . . . , θ̂d); and write (3), (4), (5) and (7) in the form: Ψ = f(Ψ), where

f = (fν , fα, fφ, f1, . . . , fd). Here fν , fα and fφ are the implicit functions defined

by the equations (3), (4) and (5) respectively; and f1, . . . , fd are specified by the

right hand side of the equations (7). Numerical iteration is required to obtain the

solution. Giving an initial value of Ψ(0) = (ν(0), α(0), φ(0), θ
(0)
1 , . . . , θ

(0)
d ), we obtain

Ψ(1) = f(Ψ(0)); and then iterate until it converges.

To estimate the variance of ν̂, we use the observed information matrix. As ν →∞,

under some mild conditions for λ0(t), ν−
1
2 (ν̂ − ν) converges in distribution to a

zero-mean normal random variable and ν̂/ν
p→ 1: see Parner (1998).

In capture-recapture experiments, some animals may die or be removed over the

course of the experiments. They cannot be recaptured. Such experiments are called

capture-recapture with possible random removals. The proposed estimation proce-

dures can be easily extended to an experiment of this type by replacing Ω(τ) by

Ω(τi) in the likelihood (2), where τi denotes the removal or termination time for the

ith individual (τi = τ if the individual is not removed during the whole experiment
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period). With the likelihood of the ith individual Li, the likelihood function based

on the whole capture history is given by

L =
ν!

(ν − n)!

n∏
i=1

Li Lν−n
0 .

With the same ideas and steps for the capture-recapture model Mhtb, the MLE of

ν can be obtained. The details are not included here.

2.2 Models Mht and Mh

For model Mht, φ = 1. Substituting this into (3), (4) and (7), gives the estimating

equations:
n∑

i=1

1

ν − i + 1
− α log(1 + Ω (τ)) = 0, (9)

n∑
i=1

mi∑
j=1

1

α + j − 1
− ν log(1 + Ω (τ)) = 0, (10)

nk

θk

− αν + Z

1 + Ω(τ)
= 0, (k = 1, . . . , d); (11)

where nk = dN(t(k)) denotes the number of individuals captured at time t(k). From

(11), we have θk = nk(1 + Ω(τ))/(αν + Z), i.e.,

dΩ(t) =
1 + Ω (τ)

αν + Z
dN (t) . (12)

Given ρ1, ρ2, . . . , ρν , the Nelson-Aalen estimator of dΩ(t) in this case is

( ν∑
i=1

ρi

)−1

dN(t);

and again the estimator (12) is equivalent to the Nelson-Aalen estimator, with ρi

replaced by the posterior expectation E(ρi | F (i)
τ ) where F (i)

τ is the capture history

up to time τ for the ith individual.
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Integrating both sides of (12), and re-arranging, we obtain

Ω(τ) =
Z

αν
.

Putting this into (9) and (10), gives

n∑
i=1

1

ν − i + 1
− α log(1 +

Z

αν
) = 0, (13)

n∑
i=1

mj∑
j=1

1

α + j − 1
− ν log(1 +

Z

αν
) = 0. (14)

Solving (13) and (14) using the Newton-Raphson algorithm, the MLEs of ν and

α are obtained. Also, (13) and (14) can be regarded as the estimating equations

from a profile likelihood in which Ω(t) is profiled out. Here, there is no difference

between MLE and MPLE (maximum profile likelihood estimate); see Murphy &

VanDerVaart (2000). To estimate the variance-covariance matrix of (ν̂, α̂), we use

the observed profile information matrix.

From (13) and (14), the estimators of ν and α depend only on (n,m1, . . . , mn); they

do not depend on the capture times and the form of ω(t). In fact, for the model

Mht, with φ = 1, the likelihood function is as follows:

L =
ν!

(ν − n)!

( n∏
i=1

mi∏
j=1

ω(tij)

) ( ν∏
i=1

α[mi]

(1 + Ω(τ))α+mi

)
.

Recall that for uncaptured individuals, mi = 0 (i = n+1, . . . , ν). It is seen from

the expression for L that the sufficient statistic for (ν, α) is (n,m1, . . . , mn). A more

detailed explanation is given in the next section.

For model Mh (for which φ = 1 and ω(t) = ω), it is shown similarly that the MLEs

of ν and α are also obtained by solving (13) and (14). Since ω(t) is profiled out in

model Mht, it does not provide extra information for estimating ν or α. Therefore,

the estimators of ν and α are exactly the same as for the model Mht.
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2.3 Model Mhb

For model Mhb, λ0(t) = 1. Similarly, for convenience of derivation, we reparam-

eterize the model as λi(t) = ρi φ
ri(t)ω, where ρi

d
= Ga(α, 1) and ω is an arbitrary

non-negative value. The likelihood function is as follows:

log L = k +
n∑

i=1

log(ν − i + 1) + ωZ −
n∑

i=1

(α + mi) log(1 + ωt∗i (φ))

− (ν − n)α log(1 + ωτ) + (Z − n) log φ +
n∑

i=1

mi∑
j=1

log(α + j − 1),

where t∗i = t∗i (φ) = ti1 + φ(τ − ti1). Differentiating gives the estimating equations:

∂ log L

∂ν
=

n∑
i=1

1

ν − i + 1
− α log(1 + ωτ) = 0,

∂ log L

∂α
=

n∑
i=1

mi∑
j=1

1

α + j − 1
−

ν∑
i=1

log(1 + ωt∗i ) = 0,

∂ log L

∂φ
=

Z − n

φ
−

n∑
i=1

ω(α + mi)(τ − ti1)

1 + ωt∗i
= 0,

∂ log L

∂ω
= Z −

ν∑
i=1

(α + mi)t
∗
i

1 + ωt∗i
= 0,

in which t∗i = τ for i = n + 1, . . . , ν. Solving these four equations, using Newton-

Raphson, the maximum likelihood estimates ν̂, α̂, φ̂ and ω̂ can be obtained. The

estimates depend on the capture times but only the first capture times of the cap-

tured individuals, and the termination time. To estimate the variance of ν̂, we use

the observed information matrix.

2.4 Models Mtb, Mt, Mb, M0

Without heterogeneity among individuals, we obtain the homogeneous models Mtb,

Mt, Mb, M0. The likelihood-based estimation procedures for which have been

given by Hwang, Chao & Yip (2002).
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3 Simulation studies

Recall that the model Mhtb is such that

λi(t) = βγiφ
ri(t)λ0(t) (0 6 t 6 τ).

For purposes of identifiability, the average value of λ0(t) (0 6 t 6 τ) is assumed to

be 1; and the mean value of γi (k = 1, 2, . . . , ν) is 1; so that β represents an overall

capture intensity.

For the models considered here, this is simply related to the capture effort, defined

as ε = βτ . This relation is derived as follows.

For the model Mht, given γi, Ni(t) is a nonhomogeneous Poisson process with in-

tensity βγiλ0(t). And, since Λ0(τ) =
∫ τ

0
λ0(t)dt = τ , we have

Pr(Ni(τ) = k | γi) =
(βγiτ)k

k!
e−βγiτ , (k = 0, 1, 2, . . .).

Since γi
d
= Ga(α, α), it follows that

Pr(Ni(τ) = k )

=

∫ ∞

0

(βγiτ)k

k!
e−βγiτ

αα

Γ(α)
γα−1

i e−αγi dγi,

=
αα

k!

Γ(α + k)

Γ(α)

(βτ)k

(α + βτ)α+k
, (k = 0, 1, 2, . . .). (15)

A useful element in describing the process is the capture proportion, denoted by π.

Hence

π = 1− Pr(Ni(τ) = 0) = 1− (
1 +

βτ

α

)−α
.

For model Mhtb, π is the same because for uncaptured individuals there is no be-

havioral modification, and so Pr(Ni(τ) = 0) is unchanged. The models Mh and

Mhb are special cases. Therefore, for the proposed models, π is given by

π = 1− (
1 +

ε

α

)−α
. (16)
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Thus the capture proportion depends only on the capture effort, ε and the homogene-

ity of the population, indicated by α. In the homogeneous case (α = ∞) π = 1−e−ε,

while in the case α = 1, which represents a quite heterogeneous population (the γi

are exponentially distributed), π = ε/(1 + ε).

In simulating the models Mht and Mh, it appears that we should set ν, β, α, τ and

the form of λ0(t) (λ0(t) = 1 for model Mh). However, only ν, α and ε need to be

set; or equivalently ν, α and π. Given ν, α and ε, the outcome is independent of

the form of λ0(t), given that its average value is 1. The reason is as follows.

For models Mht and Mh, where the same estimators are obtained, ν̂ and α̂ depend

only on the sufficient statistic (n, m1, . . . , mn), which is equivalent to (f1, f2, . . .)

where fk denotes the number of individuals captured exactly k times in the whole

experiment. The distribution of (f1, f2, . . .) depends on ν and Pr(Ni(τ) = k) (k =

0, 1, 2, . . .). From (15), Pr(Ni(τ) = k) depends only on α and ε = βτ , i.e. only on α

and π. Therefore, the distribution of (f1, f2, . . .) is determined completely by ν, α

and π.

A different form for λ0(t) would change the progress of the experiment. The effect

would be to warp the time-scale: the end result would be unchanged. So, for

simulation, we only need to specify ν, α and π: for λ0(t), we can select λ0(t) = 1.

Here all simulation results are based on 1000 repetitions: av(ν̂) denotes the average

of the 1000 values of ν̂; av.se(ν̂) the average of 1000 values of se(ν̂); and sd(ν̂)

the standard deviation of the 1000 values of ν̂; C denotes the coverage of the 95%

confidence intervals for ν, which are calculated using a log transformation presented

in Chao (1987). Let ` denote the number of failures among the 1000 repetitions. A

failure means that the iteration for the estimating equations fails to converge. When
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a failure appears among the 1000 repetitions, we say that ν lies outside the 95%

confidence interval in estimating C; while the average values av(ν̂), sd(ν̂), av.se(ν̂)

are based only on the successful repetitions. With ν = 400, a set of simulation

results for model Mht (and Mh) is presented in Table 1.

– Table 1 –

Table 1 shows that, as π increases, the bias of ν̂ and the standard deviation, sd(ν̂)

both decrease. Further, sd(ν̂) and av.se(ν̂) are quite close, indicating that the asymp-

totic standard error is satisfactory. As α increases, sd(ν̂) decreases because of the

decrease in heterogeneity (var(γi) = 1/α). When α > 2, the decrease in sd(ν̂) is

negligible. For large α, ` (the number of failures) increases, the estimate α̂ is pos-

itively biased (not reported here), however, the effect on ν̂ is minimal: since the

equation for ν is
n∑

i=1

1

ν − i + 1
− log

(
1 +

Z

αν

)α

= 0,

and log(1 + Z
αν

)α → Z/ν as α →∞, the positively biased α̂ for large α changes the

value little.

When the estimators for models Mhb and Mhtb are applied to the setting of model

Mh (regarding φ = 1 and λ0(t) = 1), it is expected that there is some loss of

accuracy through using more general models. Some simulation results are presented

in Table 2.

– Table 2 –

In the setting of modelMh, changing the value of φ but keeping the other parameters

the same, model Mh becomes Mhb. Letting φ = 0.5 and 2, applying the estimator

for Mhb, it is seen that as φ increases, the performance of ν̂ improves because of

more revisiting, and conversely, as φ decreases, the performance of ν̂ is worse because
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there is less revisiting; see Table 2.

For model Mhtb, let λ0(t) = 1+sin 9t and different values of α, φ and π are selected.

A set of simulation results are presented in Table 3.

– Table 3 –

Simulation was also carried out for some different forms of λ0(t), including poly-

nomial and exponential functions. The performance of ν̂ was found to be similar,

mainly depending on α, φ and π. In general, for ν = 400, as long as π is larger than

about 0.7, there are very few failures; and for ν = 1000, π should be larger than

about 0.5.

4 Continuous-time vs discrete-time

There is little real data from continuous-time capture-recapture experiments avail-

able. Almost all the published research for developing continuous-time models and

estimators used capture-recapture data in discrete-time form for illustration, by re-

garding the time length of each occasion as 1 and assuming that capture only occurs

at the end of each occasion. It is not very genuine continuous time data. Simula-

tion studies (not reported here) suggest that the advantages of continuous-time

estimators are not revealed by such manufactured data and serious biases would

appear if the number of capture occasion is not large enough (say, smaller than 20).

Continuous-type estimators are best applied to continuous-time data.

The unavailability of continuous time capture-recapture data could attributable to

the non-existence of the estimators. It makes the researchers to discretize the con-

tinuous data. Possible circumstances in which continuous-time data can be obtained
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are (i) camera capture, which has been widely used to observe animals in the wild,

see da Silva et al. (2000); (ii) data from electronically tagged traps, specifying time

of capture.

Comparing with discrete-time capture-recapture experiments, more efforts are usu-

ally needed for continuous-time experiments. Naturally, we would ask, are they

worth the effort? We attempt to answer that question by simulation studies and

asymptotic efficiency comparison.

Continuous time data are generated. We can either use the proposed continuous-

time estimators; or discretize the data and use the existing discrete-type estimators.

The advantage of the continuous-time estimators can then be weighed against the

effort of collecting the continuous-time data.

4.1 Models M0 and Mt

For the continuous-time models M0 and Mt, the MLEs of the population size are

the same, and do not depend on capture time or the form of capture intensity, see

Hwang et al. (2002). We assume an intensity function λ(t) and cumulative intensity

function Λ(t).

We divide the capture duration [0, τ ] into K subintervals (tj−1, tj), (j = 1, 2, . . . , K,

with t0 = 0, tK = τ), regarding each subinterval as a capture occasion. Let cj =

(Λ(tj) − Λ(tj−1))/Λ(τ), so that cj denotes the fraction of the capture effort that

occurs in the jth capture occasion. The extent of the “discretization” of the time-

scale is thus indicated by K, with the continuous time-scale corresponding to K =

∞. A number of simulation studies were conducted to compare ν̂(K) (the discrete-

time MLE based on K capture occasions) with ν̂(∞) (the continuous-time MLE).
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For the case of equivalent capture occasions (cj = 1/K, j = 1, 2, . . . , K), we com-

pare ν̂
(K)
0 (of the discrete-time M0) with ν̂

(∞)
t (of the continuous-time Mt). Some

simulation results are given in Table 4.

– Table 4 –

As ν → ∞, it can be shown that the asymptotic efficiency of ν̂
(K)
0 relative to ν̂

(∞)
t

is given by

asy.eff
(
ν̂

(K)
0 , ν̂

(∞)
t

)
=

{
1− K

[
eΛ(τ)/K − Λ (τ) /K − 1

]

eΛ(τ) − Λ (τ)− 1

}1/2

,

and as K → ∞, given Λ (τ), asy.eff
(
ν̂

(K)
0 , ν̂

(∞)
t

)
→ 1 increasingly. Controlling π

(= 1 − e−Λ(τ)) as 40%, 60% and 80% respectively, asy.eff
(
ν̂

(K)
0 , ν̂

(∞)
t

)
is plotted

against K in Figure 1.

– Figure 1 –

The simulation results and the asymptotic efficiency show that, in the case of equiv-

alent capture occasions, when the number of capture occasions is smaller than 5,

there are considerable advantages to be gained by using the continuous-time estima-

tor, especially for a low capture proportion. When the number of capture occasions

is larger than 5, the gain is marginal.

In the case that the cj are unequal, the MLE for the discrete-time Mt, ν̂
(K)
t is

considered. We choose c∼ = (3
4
, 1

4
) for K = 2, c∼ = (3

8
, 1

8
, 3

8
, 1

8
) for K = 4 and

c∼ = ( 3
12

, 1
12

, 3
12

, 1
12

, 3
12

, 1
12

) for K = 6. The simulation results are given in Table 5.

– Table 5 –

As ν → ∞, it can be shown that the asymptotic efficiency of ν̂
(K)
t relative to ν̂

(∞)
t

is given by

asy.eff
(
ν̂

(K)
t , ν̂

(∞)
t

)
=

{
1−

K∑
j=1

ecjΛ(τ) − cjΛ (τ)− 1

eΛ(τ) − Λ (τ)− 1

}1/2

.
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This efficiency is maximised when all the cj are equal, i.e. cj = 1/K, j = 1, . . . , K,

the maximum is equal to asy.eff
(
ν̂

(K)
0 , ν̂

(∞)
t

)
. When one of cj tends to1 (so the others

tend to 0, i.e. only one capture occasion), asy.eff
(
ν̂

(K)
t , ν̂

(∞)
t

)
→ 0, but this is not

the case considered. In fact, with no cj being close to 1, the asymptotic efficiency of

ν̂
(K)
t relative to ν̂

(∞)
t is found to be quite close to the asymptotic efficiency of ν̂

(K)
0

relative to ν̂
(∞)
t . For the settings in Table 9, the asymptotic efficiency is plotted in

Figure 2.

– Figure 2 –

Extensive simulation studies and the asymptotic efficiency show that, in the case

of unequal cj, when the number of capture occasions is smaller than 5, there are

advantages to be gained by using the continuous-time estimator. When the number

of capture occasions is larger than 5 and there is no extreme dominated capture

occasion, the gain is less.

4.2 Models Mh and Mht

For the proposed continuous-time modelsMh andMht, the MLEs of ν are the same.

We assume that the intensity for individual i is given by λj(t) = βγiλ0(t), where

γi
d
= Ga(α, α). Subdividing the capture duration [0, τ ] into K sub-intervals (tj−1, tj),

(j = 1, 2, . . . , K, with t0 = 0, tK = τ) with equal ∆Λ0 (tj) (=Λ0 (tj) − Λ0 (tj−1)),

regarding each subinterval as a capture occasion, then the corresponding discrete-

time model is Mh.

The likelihood for the sub-divided data is given by

L(K) =
ν!

(ν − n)!f1! · · · fK !

K∏
j=1

(PKj)
fj (PK0)

ν−n
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where PKj denotes the probability of being captured j times in the K capture

occasions for each individual, given by

PKj =

(
K

j

) ∫ ∞

0

[1− exp(−γε/K)]j exp(−jγε/K)
αα

Γ (α)
γα−1 exp(−αγ)dγ

=

(
K

j

) j∑
i=0

(−1)i

(
j

i

)[
α

α + (K − j + i) ε/K

]α

, j = 0, 1, . . . , K,

The MLE ν̂
(K)
h can be obtained by maximizing the likelihood, and the standard error

obtained from the observed information matrix.

A series of simulation studies were conducted to compare ν̂
(K)
h with ν̂

(∞)
ht . Results

are reported for a population size of ν = 500, capture proportion π = 0.6 with

heterogeneity parameter α = 0.5, 1, 2, and K = 5, 10, 15,∞ in the case of equal

capture efforts for the subintervals. This is a larger population size with a reasonable

capture proportion, allowing a range of heterogeneity. These results are given in

Table 6. Note that the reported values of K are larger than for the homogeneous

cases (Tables 4 and 5).

– Table 6 –

It is seen that a greater number of subdivisions are required to achieve reason-

able efficiency. The effect of discretization is worse when the population is more

heterogeneous. Further, these results are for the case when the capture efforts in

the sub-intervals are equal. In the case that the capture efforts are unequal, the

efficiency of the discrete-time estimators is further reduced.

Following Xi, Yip & Watson (2005), the asymptotic variances of ν̂
(K)
h and ν̂

(∞)
ht

can be obtained, then the asymptotic efficiency of ν̂
(K)
h relative to ν̂

(∞)
ht . We omit

the details but plot the efficiency against K, controlling π as 30%, 60% and 90%

respectively; see Figure 3.

– Figure 3 –
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It is seen much larger K is required to achieve reasonable efficiency comparing with

the homogeneous cases in Figure 1, 2.

Based on the proposed continuous-time model Mht, the sample coverage estimate

(see Chao et al., 1992; Lee & Chao, 1994) and the jackknife estimate (see Burnham

& Overton, 1978; Rexstad & Burnham, 1991) are also applied to the corresponding

discrete-time Mh for comparison. Simulation studies show that, ν̂
(∞)
ht performs

better than the two, in terms of smaller bias and rmse, and with higher coverage

of the 95% confidence interval. The exception is for small population with small

capture proportion. For ν < 200 with π < 0.7, in term of rmse, the sample coverage

estimate and the jackknife estimate perform better than ν̂
(∞)
ht , but ν̂

(∞)
ht has a smaller

bias and higher coverage of the 95% confidence interval.

5 Discussion

The proposed likelihood-based approach provided estimator for the population size

ν for models Mh, Mht, Mhb and Mhtb. Estimates and standard errors for ν are

obtained from the likelihood equations. Simulation showed that the performance is

acceptable if the capture proportion π is not too small. We found a few problems in

dealing with a capture-recapture situation with a small capture proportion. How-

ever, any method will have some problems in this case. The use of the likelihood

method is preferred since it is more stable and the asymptotic properties can readily

be derived via maximum likelihood theory.

Simulation studies and the asymptotic efficiencies demonstrate that there are con-

siderable efficiency advantages to be gained by using continuous-time estimators,

particularly when the population is heterogeneous. Whether efficiency advantages
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outweigh the cost of obtaining continuous-time data is another question however.

The results would be certainly better if the proposed estimator were used for genuine

continuous time data.
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ν = 400

α π av(ν̂) sd(ν̂) av.se(ν̂) C `
1 0.60 403.4 68.4 65.5 93.8% 0
1 0.75 398.5 30.8 29.2 94.5% 0
1 0.90 399.5 11.3 11.2 94.9% 0

0.5 0.85 399.9 17.7 17.4 94.8% 0
1 0.85 399.7 16.6 16.4 95.1% 0
2 0.85 398.7 15.4 15.5 94.3% 0
4 0.85 399.6 15.7 15.1 94.0% 0
5 0.80 399.9 21.4 20.3 93.3% 4
10 0.80 402.1 18.9 20.4 87.1% 97

Table 1: Simulation results for model Mht (and Mh)

λ(t) = 1, α = 1, π = 0.70 and ν = 400

φ estimator for av(ν̂) sd(ν̂) av.se(ν̂) C `
Mh 400.0 38.2 38.2 95.3% 0

1.0 Mhb 399.8 42.1 40.8 95.2% 0
Mhtb 402.6 48.3 46.0 95.1% 1

0.5 Mhb 404.0 54.5 52.0 94.6% 1
2.0 Mhb 401.6 37.9 36.2 95.2% 0

Table 2: Simulation results of applying the different
estimators to models Mh and Mhb

λ(t) = 1 + sin 9t, ν = 400

α φ π av(ν̂) sd(ν̂) av.se(ν̂) C `
1 0.5 0.70 415.0 65.9 64.2 97.1% 0
1 1.5 0.70 400.0 40.4 40.5 95.3% 0
1 1.5 0.90 396.9 11.0 10.9 95.5% 0
2 1.5 0.90 398.9 11.4 11.5 96.1% 0

Table 3: Simulation results for model Mhtb
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ν = 100 π = 0.4 π = 0.6 π = 0.8
K av rmse eff av rmse eff av rmse eff
2 113.7 58.5 0.542 101.6 19.6 0.709 100.0 8.5 0.776
4 107.8 40.6 0.781 101.2 16.2 0.858 99.7 7.2 0.917
6 106.8 37.4 0.848 100.9 15.3 0.908 99.8 6.9 0.957
∞ 106.4 31.7 1.000 100.6 13.9 1.000 99.8 6.6 1.000

ν = 200 π = 0.4 π = 0.6 π = 0.8
K av rmse eff av rmse eff av rmse eff
2 212.5 68.0 0.606 200.5 26.1 0.728 199.7 11.3 0.796
4 208.4 48.6 0.848 200.4 21.6 0.880 199.7 9.9 0.909
6 207.1 46.3 0.890 200.1 20.6 0.922 199.8 9.5 0.948
∞ 205.7 41.2 1.000 200.2 19.0 1.000 199.7 9.0 1.000

ν = 500 π = 0.4 π = 0.6 π = 0.8
K av rmse eff av rmse eff av rmse eff
2 510.6 84.5 0.708 502.4 40.3 0.727 500.4 17.9 0.810
4 508.6 69.1 0.865 501.3 33.2 0.883 500.3 15.7 0.924
6 507.3 64.6 0.926 501.2 32.0 0.916 500.4 15.4 0.942
∞ 506.4 59.8 1.000 500.9 29.3 1.000 500.4 14.5 1.000

Table 4: Simulation results based on 2000 repetitions with constant capture efforts
for different capture occasions, comparing the discrete-time estimator ν̂

(K)
0 with

the continuous-time estimator ν̂
(∞)
t , for ν = 100, 200, 500 and π = 0.4, 0.6, 0.8.

eff=rmse(ν̂
(∞)
t )/rmse(ν̂

(K)
0 ).
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ν = 100 π = 0.4 π = 0.6 π = 0.8
K av rmse eff av rmse eff av rmse eff
2 – – – 102.2 29.7 0.468 99.5 10.1 0.653
4 107.4 49.8 0.636 100.4 16.5 0.842 99.2 7.5 0.880
6 105.5 38.8 0.817 100.2 15.4 0.903 99.3 7.0 0.943
∞ 106.4 31.7 1.000 100.6 13.9 1.000 99.8 6.6 1.000

ν = 200 π = 0.4 π = 0.6 π = 0.8
K av rmse eff av rmse eff av rmse eff
2 214.9 81.5 0.506 200.0 30.4 0.625 199.2 13.6 0.662
4 205.7 49.6 0.831 199.6 22.1 0.860 199.2 10.0 0.900
6 205.1 47.0 0.877 199.5 21.1 0.900 199.4 9.7 0.928
∞ 205.7 41.2 1.000 200.2 19.0 1.000 199.7 9.0 1.000

ν = 500 π = 0.4 π = 0.6 π = 0.8
K av rmse eff av rmse eff av rmse eff
2 516.0 106.0 0.564 500.3 45.2 0.648 499.5 21.1 0.687
4 505.5 70.1 0.853 500.5 35.0 0.837 499.9 16.1 0.901
6 504.8 64.6 0.926 500.3 32.7 0.896 500.2 15.4 0.942
∞ 506.4 59.8 1.000 500.9 29.3 1.000 500.4 14.5 1.000

Table 5: Simulation results based on 2000 repetitions with varying capture efforts
for different capture occasions, comparing the discrete-time estimator ν̂

(K)
t with

the continuous-time estimator ν̂
(∞)
t , for ν = 100, 200, 500 and π = 0.4, 0.6, 0.8.

eff=rmse(ν̂
(∞)
t )/rmse(ν̂

(K)
t ). For ν = 100, π = 0.4 and K = 2, the results are not

presented for comparison due to many failures.

π = 0.6
ν = 500 α = 0.5 α = 1 α = 2

K av rmse eff av rmse eff av rmse eff
5 520.4 138.0 0.577 512.7 117.8 0.637 514.5 104.1 0.651
10 511.0 92.8 0.858 507.1 85.6 0.876 506.8 80.1 0.846
15 508.9 89.5 0.889 506.4 84.0 0.893 505.3 74.7 0.907
∞ 506.2 79.6 1.000 504.5 75.0 1.000 503.2 67.7 1.000

Table 6: Simulation results based on 2000 repetitions with constant capture efforts
for different capture occasions, comparing the discrete-time estimator based on K
intervals with the continuous-time estimator (K = ∞), for ν = 500, π = 0.6 and
heterogeneity parameter α = 0.5, 1, 2.

26



2 4 6 8 10 12 14

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

K

R
el

at
iv

e 
E

ffi
ci

en
cy

60%

80%

40%

Figure 1: Asymptotic efficiency of ν̂
(K)
0 relative to ν̂

(∞)
t by controlling π as 40%,

60% and 80% respectively.
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Figure 2: Asymptotic efficiency of ν̂
(K)
t relative to ν̂

(∞)
t for the settings in Table 5.
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Figure 3: Asymptotic efficiency of ν̂
(K)
h relative to ν̂

(∞)
ht for α = 0.5, 1, 1.5 and 3.
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