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Abstract
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1. INTRODUCTION

Linear-quadratic alternating-move dynamic games with two players have been used
in Cyert and DeGroot (1970), Maskin and Tirole (1987), De Fraja (1993), Tanaka
(1994), Lau (1996) and Cahuc and Kempf (1997). In these games, each player’s choice
variable lasts for two periods, and the players’ action times are alternating such that
one player sets his control at every even period, while his opponent chooses at every
odd period.

As some economic issues (such as the aggregate timing pattern of wage or price
adjustment in a multi-sector model) may involve the analysis of strategic and dynamic
interaction among many players, this paper develops a general solution method to the
class of linear-quadratic alternating-move games with n (n > 2) players. Each player’s
action lasts for n periods, and they choose their controls alternatingly. Extending
the method for simultaneous-move dynamic games considered in Kydland (1975),
this paper presents an algorithm to solve linear-quadratic alternating-move games.
Moreover, verifiable conditions which guarantee the existence and uniqueness of the
solution are given.

Another motivation of this paper is to investigate whether a staggered timing pat-
tern will be preferred when more than two wage setters interact strategically and
dynamically. Lau (1996) studies two aspects of labor market institutions (staggered
versus synchronized wage setting, and coordinated versus noncooperative wage ad-
justment) in an intertemporal model with two players. In particular, it is shown that
the two wage setters prefer moving alternatingly when they interact noncooperatively.
By moving alternatingly, the wage setters are able to commit temporarily not to offset
the effects of each other’s action. The strategic benefit of staggered wage adjustment

provides a justification for the assumption of staggered timing pattern used in Fischer

(1977) and Taylor (1980).



In previous research on the microfoundation of staggered moves, Fethke and Poli-
cano (1986) show that when the number of sectors increases in their earlier model
(Fethke and Policano, 1984) which emphasizes the transmission of employment effects
across sectors, it becomes less likely that staggered wage adjustment will be optimal.
This is because ”... the effect on the aggregate price level of the actions by any one
sector is negligible, and the beneficial externality associated with staggered negotia-
tion is too small to have an effect.” (Fethke and Policano, 1986, p. 872). In light
of their results, it is interesting to examine whether the strategic benefit provided by
staggered wage adjustment is robust with respect to the number of wage setters in
the model economy.

The remaining parts of this paper proceed as follows. Section 2 considers a two-
symmetric-player alternating-move game, and shows how it can be reformulated as
a simultaneous-move dynamic game with alternating payoft functions. Generalizing
from this idea, Section 3 then presents a solution method to obtain the equilibrium
decision rules of multi-player linear-quadratic alternating-move games. Section 4
studies the question of synchronized versus staggered wage adjustment in an economy

with more than two sectors. Section 5 provides conclusions.
2. A MOTIVATING EXAMPLE

Maskin and Tirole (1987) provide elegant analysis of an alternating-move game with
two symmetric players and apply it to a dynamic quantity (or capacity) competition
model. A similar formulation has been followed and used in other papers such as De
Fraja (1993) and Cahuc and Kempf (1997). This section considers a two-symmetric-
player linear-quadratic alternating-move game with general deterministic quadratic
objective functions, which includes the various slightly different functional forms used
by Maskin and Tirole (1987), De Fraja (1993) and Cahuc and Kempf (1997) as

special cases. It shows how this game can be reformulated as a simultaneous-move



dynamic game with alternating payoff functions. The analysis of this section helps
clarify the underlying idea behind the reformulation procedure. This reformulation
procedure, which is easier to understand in a two-player model, will be generalized
to a multi-player model in the Section 3. The reformulation is an important step for
the algorithm suggested in this paper.

The alternating-move game discussed in this section consists of two symmetric
players, labelled as players 0 and 1. Player 0 (resp. 1) chooses a strategic variable z at
every even (resp. odd) period, which lasts for two periods. As a result, zp2x+1 = 2021
and 212y = 21.2a—1, Where z;; denotes the choice of player ¢ at period ¢, which is set
either in the current or previous period. Each player maximizes an intertemporal

payoff function, which is given by
r—1
> B, (1)
t=0

where 0 < 3 < 1, and the single-period payoft function U, is given by:

Ui = ag (Zi,t)2 + aq (Zj,t)2 + 20921251 + 2032 + 204254 + as, (2)

)

with 4,7 = 0,1 and @ # j, and ag < 0.

In order to apply the solution method suggested in this paper, it is helpful to
reformulate the alternating-move game as a simultaneous-move dynamic game with
alternating payoff functions. For the above game, the first step of the reformulation
procedure is to define zpoyx = zp2x and xjoa+1 = 2z12a11. Note that zpon (resp.
21 2x+1) is the choice of player 0 (resp. player 1) when he moves. The second step is
to introduce dummy control variables x1 2y (resp. xg2x+1) for player 1 (resp. player
0) when his opponent moves. The third step is to define the vector of controls x; =

(zot, ﬂ31,t), for the new game, and the vector of state variables

Y = (fCO,t—bxl,t—l, Tot—2, T1,t—25 1),- (3)



As a result, the law of motion for the simultaneous-move game is represented by:

(0o0oo000| [10]
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Y1 =Ay+Bry={1 00 0 0 |+ |0 0| (4)
01000 00
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The last step is to express the players’ payoff functions in terms of the variables
of the reformulated simultaneous-move game, instead of the variables of the original
game. It can be observed that, except for the inclusion of an extra term & (z;,;)° in

(6), the single-period payoff function (2) for the original game is equivalent to:
Usp = ao (2:)° + a1 (fﬁj,t—1)2 + 209747541 + 203754 + 204751 + as

= Y1 Qi klet1, (5)

for i =0 (if ¢ is even) or ¢ = 1 (if ¢ is odd), and
Ui =6 (xz',t)Z + ag (xi,t—l)Z + aq (xj,t)Z + 20075411 + 203741 + 204754 + as

= y£+1Qi,kyt+17 (6)

for i = 0 (if ¢ is odd) or @ = 1 (if ¢ is even), where ¢ is strictly negative, and k = ¢
mod 2. Sub-section 3.2 will explain why the term & (2,)” is included in (6) and why
this inclusion does not affect the final solution (in terms of the choice variables of the
original game).

Combining (3), (5) and (6), the four payoff matrices Q; (¢ =0,1; k = 0, 1) for the



above game are given by:
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The analysis of this section shows that the above two-symmetric-player linear-

quadratic alternating-move game can be reformulated as a simultaneous-move dy-

namic game with alternating payoff functions, provided that appropriate care is taken

during the reformulation process. This simple example is helpful in understanding the



approach used in the next section, in which a general multi-player linear-quadratic

alternating-move game is considered.

3. SOLUTION OF MULTI-PLAYER LINEAR-QUADRATIC
ALTERNATING-MOVE GAMES

This section considers a multi-player linear-quadratic alternating-move game (with
the number of players, n, equal to or greater than 2) from period 0 to period r — 1

(where r is assumed to be a multiple of n) in which:

1. player i (i = 0,1,...,n — 1) chooses his action z;,x+; in period nA + i for some
non-negative integer A\, and the control remains unchanged for n periods (see

Figure 1),

2. the intertemporal payoff of each player is given by the expected present dis-
counted value of a stream of single-period payoffs, which are quadratic functions

of the choices of the players, and

3. the law of motion is linear (and, possibly, stochastic).

This game is called AM (which stands for ”alternating moves”). Since it is more
convenient to represent the payoff functions and the law of motion in terms of the

variables of the reformulated game, they will be given later in Sub-section 3.2.

1 As in Section 2, z refers to choice variables of the alternating-move game, and x refers to choice
variables of the simultaneous-move game with alternating payoff functions. Moreover, to economize
on the use of notation, some of the symbols are the same as those in Section 2, even though they

refer to different games.



3.1. A linear-quadratic simultaneous-move dynamic game with alternating

payoff functions

Though the ultimate objective of this paper is to solve a multi-player linear-
quadratic alternating-move game, it is helpful to first consider a more general class
of games: multi-player linear-quadratic simultaneous-move dynamic games with al-
ternating payoft functions. Therefore, this sub-section introduces this class of games
and defines relevant terms.

Consider a finite-horizon n-player (n > 2) linear-quadratic dynamic game from
period 0 to period r — 1 (where r is a multiple of n) in which: (a) all players (labelled
as players 0 to n — 1) move simultaneously at every period to maximize the expected
present discounted value of a stream of single-period payoffs, (b) each player’s single-
period payoff functions are quadratic and alternating among n functional forms, and
(c) the law of motion is linear.

Let z;, y; and #; be vectors of dimension n, w and v respectively. At any pe-
riod t, each player is assumed to control just one variable z;;, and vector z; =
(Zots 1ty --ms ﬂ3n—1,t)/ represents the players’ controls. Vector y; describes the state of
the system at the beginning of period ¢, which may include a constant or the players’
choice variables in previous periods. Vector 6, represents the random variables, which
are assumed to be realized after the players make their decisions at that period. The
vector of random variables is also assumed to be serially uncorrelated with mean zero
and finite covariance matrix Q, i.e., £ (0;0;) = Q for t =0, 1,...,7 — 1 where E is the

expectation operator. Therefore, the linear law of motion of the system is given by:
Yer1 = f (ye, 0, 0¢) = Ays + By + COy, (11)

where t = 0,1, ...,7 — 1, and the dimensions of matrices A, B and C can be deduced

easily.



Define the following n functions, f;(.), for notational convenience:

f (yt,xt, Ht) = fi (yt,xz‘,t,x—i,t; 615)7 (12)

where i = 0,1,...,n—1,t =0,1,....r — 1, and @_;; = (Tot, o, Ti_ 14, Tit1t s Tr1t)
is the (n — 1) x 1 vector of controls excluding ;.
The intertemporal objective function of player i (i = 0,1,...,n — 1) is given by:
r—1 .
B3 (00 U] (13
t=0
where 3, (0 < 8; < 1) is player i’s discount factor and U;; is the single-period payoff
of player i at t, which is represented by:

Uis = Ui,k (yt, Lijty T—its et) ) (14)

)

where k is a non-negative integer smaller than or equal to (n — 1) such that
k =t mod n, (15)

which means that there exists a non-negative integer A such that t = nA+k and n\ <
t < n(A+1). The above specification captures the fact that player i’s single-period
payoff functions are alternating among n functional forms U (.). Furthermore, it is

assumed that U;; quadratic and represented by:

n—1 ! n—1
Uit = Y1 PikYerr = <A?Jt + Zo bjw;e + 09t> Pk (Ayt + ‘Zo bjz;, + 09t> , (16)
j= j=

where b; (w x 1) is column j of matrix B in (11), and P, is a symmetric w x w
matrix.
The structure of the game and the definition of the value functions (to be discussed

later) are summarized diagrammatically in Figure 2.



3.2. Reformulation of the original alternating-move game as a simultaneous-

move dynamic game with alternating payoff functions

There is a difference in structure between a simultaneous-move dynamic game with
alternating payoff functions and an alternating-move game. To apply the framework
in Sub-section 3.1 to game AM, a corresponding simultaneous-move dynamic game

with alternating single-period payoff functions is constructed by:

1. Defining z;; = z;+ for all t mod n =i (i.e. the periods when player ¢ moves),

2. Introducing dummy control variables z;; for all ¢ and all ¢ such that ¢ mod
n # 1,
3. Representing the linear law of motion according to (11) after appropriately

defining vectors z;, y; and 6;,% and

4. Expressing the quadratic single-period payoff functions of the players in terms

of the state variables y;, according to (16).

An important point to note is that the dummy control variables do not appear in
any player’s payoff function in the original game AM. Therefore, there are multiple
equilibria (with respect to these dummy control variables) in the above simultaneous-
move dynamic game. In order to avoid this feature, a slightly different simultaneous-
move game, to be called SMAP (which stands for ”simultaneous moves, alternating
payoffs”), is constructed by modifying the payoff functions of all players such that
the term & (z;,)” (where § < 0) is added to U;, for all t mod n # i.> As a result, the

2To make the notation of an alternating-move game consistent with that in Sub-section 3.1, it is
easily seen that the vector of controls x; in (11) includes not only the actual control variables (of
the original game AM) but also the dummy control variables. See also the motivating example in

Section 2 for the construction of control variables x; and state variables ;.
3Technically, this step is introduced to prevent the non-invertibility of the matrix H;B in (21).

Non-invertibility of this matrix means that the game has either no equilibrium or multiple equilibria.

10



single-period payoff function of player ¢ at period ¢ for the constructed game SMAP

can be written as:
Uit = Yp1 QikYet1, (17)

where ;. (which is also symmetric) and P, in (16) are related by:

Qik = Pi (18)

for k =4, and
V1 Qi1 = Yia Pirtiess + 6 (i) (19)
for k # 1.

The relationships in (17), (18) and (19) capture the fact that in the constructed
game SMAP, the single-period payoff function of a player is the same as that in game
AM during the periods when he moves, but includes the dummy control variable in
any other period. It will be seen in the proof of Proposition 1 that the optimal choices
of the dummy control variables equal to zero, and so the solution (in terms of the
control variables of the original game AM, and the maximized payoffs of the players)
of the constructed game SMAP will be the same as that of the original game AM,

after ignoring the dummy control variables.
3.3. Solution of the game

Each player is assumed to choose a Markov (or feedback) strategy, i.e., the control
variable is a function of the state variables only. Player i chooses his sequence of
Markov strategies {z;; (y);t =0,1,...,r — 1} to maximize the intertemporal payoff
function (13) subject to the law of motion (11), the decision rules of other players,
and the initial condition .

The solution concept used in this paper is Markov perfect equilibrium (MPE).* A

4The terminology follows Maskin and Tirole (1987). Kydland (1975) and Basar and Olsder (1999)

use the term ‘feedback Nash equilibrium’ for the same concept.

11



sequence of Markov strategy vectors {z; (y;);t =0,1,....7 — 1} constitutes a MPE
of this game if for each player i, the sequence {z;; (y:);t = 0,1,...,7 — 1} maximizes
player i’s intertemporal payoff function (13), taking the decision rules of the other
players {x_;; (y:);t =0,1,...,7 — 1} as given. It can easily be seen that the above
simultaneous-move dynamic game with alternating single-period payoff functions is
a generalization of the simultaneous-move dynamic game with time-invariant single-
period payoff functions considered in Kydland (1975).

A natural question arises in multi-agent decision problems is the possibility of mul-
tiple equilibria. In this paper, the equilibrium of the dynamic game is unique, which
is guaranteed for the linear-quadratic model under assumption [A1] in Proposition 1.

To facilitate the derivation of the (unique) equilibrium of the above game, define
the value functions for the players. Let V;; (y:) be the maximum intertemporal payoff
that can be attained by player ¢ for the subgame starting with initial state gy, at period
t and proceeding to the end of the game, with the optimal Markov strategies of the
other (n — 1) players taken as {z_;s (ys) ;s =t,t +1,...,7 — 1}. The above definition
leads to the following recursive relationship of value functions for ¢t =0,1,...,r — 1:

V;,t (yt) = qlﬁfi%i() E {Ui,k [?Jw it (yt) y L—it (yt) 79t] + @W,tﬂ [fz (yt, qit (yt) y LT—it (yt) , 04
(20

where k is defined in (15). Without loss of generality, it is assumed that V; . (y.) =0

i
)

for all possible values of y, at the end of the game.
For the constructed game SMAP with quadratic and alternating payoff functions,
Proposition 1 gives the (computationally verifiable) conditions for existence and

uniqueness of the MPE, and an algorithm to compute the equilibrium.
Proposition 1 Assume that [A1]:

b; (Qik + BiSip1) b <0

12



fori=0,1,...n—1andt = 0,1,....,7 — 1 where k is defined in (15) and S;+y1 is
defined recursively in (23). Then there is a unique MPE to the constructed linear-
quadratic simultaneous-move game SMAP. The equilibrium decision rules x; (y;) and

the value functions Vi (y:) can be computed recursively by:
i () = — (H,B) ™ H Ay, (21)

Vie (W) = upSiaye + ciy, (22)

Siv = A [I— B(HB) ™ H| (Qix+ 8;Si001) [[ - B(H,B) " H] A, (23)

¢t = trace [C/ (sz + ﬁiSz‘,t—i-l) CQ] + ﬁici,tﬂa (24)
b6 (Qo.k + BoSo,41)
b (Que + B151,041)

Hy = ) (25)

i b1 (Qn—l,k + ﬁn_lsn_lm)

where S;, = 0, ¢;» = 0, I is an identity matriz of dimension w, and the trace of a

square matriz is the sum of its diagonal elements.

The proof of Proposition 1, which is based on Basar and Olsder (1999) and es-
pecially Kydland (1975), is given in an Appendix available from the author upon
request. Note that assumptions (i) and (ii) in Theorem 1 of Kydland (1975) repre-
sent respectively the second order condition and the invertibility of matrix H;B. In
the constructed game SMAP considered in this paper, it is observed from the proof
that the invertibility of H;B in (21) is guaranteed automatically. As a result, only
one assumption, [Al], is required for Proposition 1.

To summarize, the above analysis suggests the following algorithm to obtain the

equilibrium of the multi-player linear-quadratic alternating-move game AM:

13



1. Construct @;j of game SMAP from P, for all i and k according to (18) and
(19).

2. Start with S;, = 0 and ¢;, = 0 for all 4.

3. Calculate the equilibrium decision rules and value functions for i =0,1,....,n—1
and t = 0, 1, ...,7—1 recursively according to (21) to (25). Note that the validity
of assumption [A1] can be checked computationally for every player and every

period.

4. The solution to the original alternating-move game AM can be obtained from
that of the constructed game SMAP, after ignoring the equilibrium values of all

dummy control variables.
3.4. Limit of the finite-horizon games as the horizon grows

An interesting follow-up step is to obtain the MPE of the corresponding infinite-
horizon alternating-move game, interpreted as the limit of a sequence of finite-horizon
games as the number of periods, r, tends to infinity. A nice property in considering
the limiting model is that the equilibrium decision rules, if they exist, will be time-
invariant.® The computation algorithm described above is applicable, and one can

obtain the limiting equilibrium decision rules and value functions as arbitrarily close

°In an infinite-horizon alternating-move game, the equilibrium decision rules and the value func-
tions take m alternating functional forms and do not depend on calendar time. For example, the
value functions in (20) are replaced by Vi ¢ mod n (¥:) and V; 441) mod n (Yi+1) respectively. Follow-
ing similar analysis as in Proposition 1, it can be shown that the equilibrium decision rules and the
value functions can be calculated recursively by (21) to (25) with the subscript ¢ in H, S; ¢, ¢ and
Vit (.) being replaced ¢ mod n, and subscript t+1 in S; ;41 and ¢; 111 being replaced by (¢ + 1) mod

n. Similar interpretation and results for the infinite-horizon simultaneous-move dynamic games are

found in Kydland (1975).

14



as one wants, provided that they converge.®

As an example, consider the infinite-horizon version of the two-symmetric-player
linear-quadratic alternating-move games in Section 2 that satisfy assumption [A1] of
Proposition 1, which can be verified computationally (at every step of the calcula-
tion).” By iterating (23) with specific values of 3, ag, a1, as, a3, as and as substituted
in Qi (i =0,1;k = 0,1) according to (7) to (10), the matrices S;; are found to con-
verge numerically to two alternating matrices for each player. It can be shown that,

when £ is even,

Tot 0 v 00 « o+ YT -1
= yt - ) (26)
Tit 0 00 0O 0
and when ¢t is odd,
Tot 0 00O0O 0
= yt - ) (27)
Tt Y 0 00 « a+ Yo, t—1

where « and y are coefficients depending on 3, ag, a1, as, as, ay and as. As expected,
all dummy control variables are zero at the equilibrium. In terms of the original

alternating-move game, the equilibrium reaction functions are given by:

Zt mod 2,t =— + YZ(t—1) mod 2,t—1- (28)

SMaskin and Tirole (1987) use a contraction mapping argument to show that, as the horizon
increases, the finite-horizon equilibrium strategies of their model (with a specific functional form)
converge to their infinite-horizon counterparts. While similar proofs should ideally be performed for
other problems before the suggested algorithm is applied, this line of investigation is not pursued
in Kydland (1975) and this paper which focus on how the solution can be represented in a simple
recursive form and therefore can be obtained computationally. See Kydland (1975, section 5) and
Maskin and Tirole (1987, section 4) for more discussions about the existence and convergence issues

for the infinite-horizon games.
"A necessary condition for this assumption to hold is biQ; 1kb; < 0. While this condition is not

satisfied for every possible quadratic payoff function represented by (2), it is satisfied for many

economic models such as Maskin and Tirole (1987) and De Fraja (1993).

15



The above results are applicable to the class of two-symmetric-player linear-quadratic
alternating-move games including Maskin and Tirole (1987), De Fraja (1993) and
Cahuc and Kempf (1997).8

4. A WAGE SETTING GAME WITH MORE THAN TWO PLAYERS

Lau (1996) examines the aggregate pattern of wage adjustment in a two-sector
model with strategic complementarity and negative externality, and shows that wage
setters prefer moving alternatingly when they interact strategically in a decentralized
environment. In that model, wage setters in a particular sector care about their
real wages, but they can only control directly their nominal wages since the general
price level is also affected by the decisions elsewhere in the economy. Moreover, it is
assumed that an increase (resp. a decrease) in the nominal wage of one sector will,
other things being equal, decrease (resp. increase) the payoffs of other agents, and
that the optimal reaction to an increase (resp. a decrease) in nominal wages elsewhere
in the economy is to have one’s own nominal wage increased (resp. decreased).

This section examines whether the result that nonsynchronization is the preferred
timing pattern in the above model is robust to the number of wage setters in the

economy.? Specifically, analysis using the solution method in Section 3 is carried out

8For example, the single-period payoff function (15) of Maskin and Tirole (1987) can be expressed
in the form of (2) of this paper with ag = —1, a1 = —1, a3 = d/2 and a3 = a4 = a5 = 0. It can be
shown numerically that coefficients v and « of the equilibrium reaction functions (28) obtained by
the solution algorithm suggested in Proposition 1 are the same as those obtained by (20) and (21)

of Maskin and Tirole (1987).
9Note that Fethke and Policano (1986) and this paper only consider whether staggered wage

adjustment is Pareto optimal or not in an economy with many sectors, but not the more difficult
question of whether and how the optimal timing pattern will arise as the equilibrium outcome. It is
quite difficult in general to derive the aggregate timing pattern endogenously in a multi-sector model

(say, by allowing the players the choice in moving from one cohort to another by waiting an extra

16



for a three-sector model, and then the implications of the results of this model for an
economy with more sectors is discussed.

In an economy with n (n > 2) sectors, the intertemporal payoff function of each
wage setter is assumed to be given by (13) with 3, = 3, the horizon r tends to infinity,

and
Ui,t = (zi,t - pt) [h - (zi,t - pt)] ) (mt - pt)2 ) (29)

where g (0 < g < 1) and h (h > 0) are constants, z;; is nominal wage (in log) of sector

i at t, py is the general price level (in log) at t and is given by:
1 n—1
Dt = — Z Zit + €, (30)
n =

and m; and e; are money and price shocks at . The money and price shocks are
assumed to be uncorrelated zero-mean random processes and are realized at the be-
ginning of a period.!® Note that the above model is of infinite-horizon and is a
generalization of the two-sector model in Lau (1996); a detailed discussion (for the
two-sector version) of the model can be found in that paper.

When the number of sectors increases beyond two, however, there is no single
measure of the degree of synchronization. To highlight the role of strategic behavior
in affecting the aggregate pattern of wage negotiation, this section compares the two

polar cases: complete synchronization versus uniform staggering.

period, as specified in Maskin and Tirole, 1987). Maskin and Tirole (1987, p. 963), Ball and Romer
(1989, p. 186) and Lau (1996, p. 1651) discuss some issues related to the modelling of equilibrium
timing pattern and discuss why the Pareto optimal timing pattern is likely to be the equilibrium

outcome.
0Tn order to apply the solution method suggested in this paper, vector #; (which is assumed to

be realized after the players make their decisions at period t) is defined as 6, = (m41, et+1)/.

17



4.1. Complete synchronization

Under this timing pattern, all wage contracts last for n periods and all n sectors
determine wages at the same time, say, when ¢ is a multiple of n. Taking the nominal
wages of the other (n — 1) sectors as given, wage setter ¢ chooses z; ,\ to maximize

n(A+1)—1

> BNy,

t=nA

E : (31)

where U, ; is given by (29). Because of symmetry, it can easily be shown that the

equilibrium wage is given by:

syvo _ (1=0") (n=1)h+2(1—5)gmm+2(1=f) (n—1-g)em
b 2(1-5")g '

(32)
4.2. Uniform staggering

Under this pattern, the wage contracts of the n sectors are renewed alternatingly
such that wage setter ¢ makes decision at period nA 4 i. Each contract lasts for n
periods and the contract wage is assumed to be constant throughout the duration.

The reformulation of this alternating-move game to the framework of Sub-section
3.2 is similar to that used in the example of Section 2. Applying the suggested algo-
rithm to the three-sector model, the matrices S; ; defined in (23) are found to converge
numerically to three alternating matrices for each player. As a result, the equilibrium

reaction functions for the three-sector wage setting game is of the following form:

Zt mod 3,t = ¢O + ¢1Z(t—1) mod 3,t—1 + ¢2Z(t—2) mod 3,t—2 + ¢3mt + ¢4et7 (33)

where ¢y, @1, ¢, @3 and ¢, are coeflicients depending on 3 and g. Some computed

values are shown in Table 1.
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4.3. A comparison of synchronized and staggered wage adjustment

In the two-sector version of the wage setting game, the results in Lau (1996, p.
1652) suggest that there are two factors influencing the merits of staggered adjust-
ment as compared to synchronization: the importance of strategic dependence and
that of the random shocks. Specifically, the steady state payoff of each of the play-
ers under staggered wage adjustment is always higher than its counterpart under
synchronization if there is no random shock; moreover, the difference of the steady
state payoffs under staggered and synchronized wage adjustment is increasing in the
variance of the price shock but is decreasing in the variance of the money shock.

Regarding the benefit provided by staggered wage adjustment under strategic and
dynamic interaction, the intuition is as follows. By choosing wages at different times,
the action of each wage setter will not be offset by that of his opponent. Therefore,
a player does not need to set a very high nominal wage. Because of the presence
of strategic complementarity, this choice of a low nominal wage further induces his
opponent to follow in the future. As a result, both players obtain higher payoffs
because of the presence of negative externality (with the lower nominal wages leading
to higher aggregate demand).

As the main concern of this section is whether the strategic benefit of a staggered
timing pattern is robust with respect to the number of wage setters, the effect of the
random shocks is of secondary importance and thus not examined. In the following
analysis, the deterministic components of the players’ steady state payoffs under
these two regimes are compared. Under complete synchronization, the deterministic
component of the steady state payoff of each of the three wage setters is given by
—g (zSYN 0)2 where 29YNY = h/g; see (32). Under uniform staggering, this is given
by —g (ZSTAG>2 where 25TA¢ = ¢ h/ (1 — ¢y — ¢,), as can be deduced from (33).

Table 2 shows the difference of the deterministic components of the steady state
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payoffs under these two regimes for some parameter pairs (3, g) in two- and three-
sector models respectively.!!

From Table 2, it can be seen that all terms are positive, implying that uniform
staggering is preferred to complete synchronization for all parameter combinations of
both the two- and three-sector models. A more important observation is that for a
particular (3, g) combination, the difference is increasing in the number of sectors
in the economy. (Extensive computational checks suggest that this is true for all
parameter combinations of 0 < # < 1 and 0 < g < 1.) These results suggest that a
staggered timing pattern will still be preferred in a decentralized economy with many
wage setters when they interact strategically.

What are the intuitions of the above results? The fundamental source of conflict
in this wage setting model is the interdependence and strategic interactions among
the wage setters. When they move simultaneously, they tend to set a ‘too-high’ level
of nominal wage due to the usual strategic consideration. Nevertheless, each wage
setter’s action is offset by his opponent at the equilibrium, with the resulting high
nominal wages in all sectors leading to a high aggregate price level. Consequently,
all wage setters suffer due to the low aggregate demand. When the number of wage
setters increases (and therefore nominal wage in each sector has less influence on the
aggregate price level, as can be observed in (30)), the externality problem of a higher
nominal wage in any sector on the welfare of other wage setters (through the price
level) becomes more severe. As the strategic benefit of staggered wage adjustment lies
in its ability in overcoming the externalities involved in decentralized wage setting,'?

it is logical to conjecture that such benefit of a staggered timing pattern becomes

HFor the two-sector model, the corresponding number is calculated from the deterministic compo-
nent of (7) in Lau (1996). Alternatively, it can be obtained by the algorithm suggested in Proposition

1.
128ee more discussions about issues associated with externalities in wage adjustment in Layard et

al. (1991).
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more important when the number of wage setters increases. The comparisons of the

wage setters’ payoffs under the two regimes in Table 2 confirm this conjecture.
5. CONCLUSION

Following the analysis of Cyert and DeGroot (1970) and Maskin and Tirole (1987),
linear-quadratic alternating-move games with two players have recently been applied
in many papers. Perhaps because of the complexity in analyzing an alternating-move
game with three players or more, only two-player games have been considered. In
order to study an alternating-move dynamic game with more than two players, this
paper develops a solution method by making use of the similarity of this game and
a simultaneous-move dynamic game with alternating payoff functions. The solution
procedure is applicable to the class of multi-player linear-quadratic alternating-move
games, including the cases of (a) more than two players, and (b) asymmetric intertem-
poral payoff functions of the players (in terms of either different discount factors or
different single-period payoff functions).?

The solution method discussed in this paper is developed for an alternating-move
dynamic game in which only one player moves at each time period. This specification
is a natural extension of the two-player alternating-move game widely used in the
literature. The proposed solution procedure can easily be extended to other cases in
which the number of periods that the control remains unchanged is different from the
number of players. However, in such an alternating-move game in which two or more
players move at a particular period, an assumption which guarantees the invertibility

of a matrix similar to H;B in (21) is also needed; see assumption (ii) in Theorem 1

13As an example, the asymmetric single-period payoff function (1) of Tanaka (1994) can be ex-
pressed in a form similar to that of the four matrices Q; 1 (¢ =0, 1;k = 0, 1) of Equations (7) to (10)
of this paper with parameters ag = —1, a; = —1, a} = (d + s;) /2 and az = a4 = a5 = 0, where a3

in Q;0 and Q;1 (i =0,1) are replaced by aj.
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of Kydland (1975) as well. This modification is rather straightforward; moreover, the
validity of this assumption can also be checked computationally.

Applying the proposed algorithm in Proposition 1 to study the timing pattern of
wage adjustment in a three-sector model, it is found that the deterministic component
of the steady state payoff of each of the three wage setters under uniform staggering
is higher than its counterpart under complete synchronization. The result supports
the conjecture that the benefit provided by staggered wage adjustment is robust to

the number of wage setters when they interact strategically.
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Table 1: Equilibrium reaction functions for the three-sector alternating-move wage game

B\g 0.1 0.3 0.5 0.7 0.9
0.1 0.77 0.72 0.68 0.65 0.62
0.48 0.40 0.33 0.27 0.22
0.44 0.37 0.31 0.25 0.20
0.069 0.19 0.31 0.41 0.50
131 1.10 0.92 0.76 0.61
0.3 0.85 0.77 0.71 0.66 0.62
0.50 0.40 0.32 0.26 0.20
0.38 0.31 0.25 0.21 0.17
0.060 0.16 0.25 0.33 0.41
1.15 0.93 0.76 0.62 0.50
0.5 0.93 0.79 0.72 0.66 0.62
0.50 0.38 0.30 0.24 0.18
0.33 0.26 0.21 0.17 0.13
0.053 0.14 0.21 0.27 0.33
1.00 0.78 0.62 0.50 0.40
0.7 0.98 0.80 0.71 0.66 0.62
0.48 0.35 0.27 0.21 0.17
0.28 0.21 0.17 0.13 0.11
0.045 0.11 0.17 0.22 0.26
0.85 0.64 0.51 0.41 0.32
0.9 0.99 0.79 0.70 0.65 0.61
0.45 0.32 0.25 0.19 0.15
0.23 0.17 0.14 0.11 0.086
0.037 0.092 0.14 0.18 0.21
0.70 0.52 0.41 0.33 0.26

Note:

For each (B, g) combination, the five numbers represent respectively the coefficients ¢, ¢,, ¢,, ¢, and
@, of the equilibrium reaction function in (33) of the main text.



Table 2: The difference between a wage setter's payoffs under staggering and synchronization

B\g 0.1 0.3 0.5 0.7 0.9
0.1 0.68 0.15 0.058 0.022 0.005
1.50 0.42 0.21 0.12 0.078
0.3 1.47 0.34 0.13 0.054 0.013
4.53 1.25 0.63 0.37 0.23
0.5 1.86 0.45 0.18 0.075 0.019
6.84 1.90 0.96 0.57 0.36
0.7 2.09 0.52 0.22 0.091 0.023
8.27 2.33 1.19 0.72 0.46
0.9 2.21 0.57 0.24 0.10 0.026
9.05 2.61 1.35 0.82 0.54

Note:

For each (B, g) combination, the first (resp. second) number represents the deterministic component of

(US™€ - U™ )/ h? in the two-sector (resp. three-sector) wage setting game, where U®*™¢ and

U S™C are respectively the steady state payoffs of a player under uniform staggering and complete

synchronization.



Figure 1: A multi-player alternating-move dynamic game
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Player (n-1) chooses z,,; .,

Player (n-2) chooses z, , .,

Player 1 chooses z, , (lasting for n periods)

Player O chooses z, , (lasting for n periods)

Note: r is a multiple of n.

Figure 2: A multi-player simultaneous-move dynamic game with alternating payoff functions
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Note: r is a multiple of n.





