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Abstract

In order to analyze a multi-player linear-quadratic alternating-move dy-

namic game, this paper develops a solution method by making use of the similar

structure of this game and a simultaneous-move dynamic game with alternating

payoff functions. It then applies the method to investigate whether staggered

or synchronized wage adjustment will be preferred when more than two wage

setters interact strategically and dynamically. The results suggest that the

strategic benefit provided by staggered wage adjustment is robust with respect

to the number of sectors in the economy.
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1. INTRODUCTION

Linear-quadratic alternating-move dynamic games with two players have been used

in Cyert and DeGroot (1970), Maskin and Tirole (1987), De Fraja (1993), Tanaka

(1994), Lau (1996) and Cahuc and Kempf (1997). In these games, each player’s choice

variable lasts for two periods, and the players’ action times are alternating such that

one player sets his control at every even period, while his opponent chooses at every

odd period.

As some economic issues (such as the aggregate timing pattern of wage or price

adjustment in a multi-sector model) may involve the analysis of strategic and dynamic

interaction among many players, this paper develops a general solution method to the

class of linear-quadratic alternating-move games with n (n ≥ 2) players. Each player’s
action lasts for n periods, and they choose their controls alternatingly. Extending

the method for simultaneous-move dynamic games considered in Kydland (1975),

this paper presents an algorithm to solve linear-quadratic alternating-move games.

Moreover, verifiable conditions which guarantee the existence and uniqueness of the

solution are given.

Another motivation of this paper is to investigate whether a staggered timing pat-

tern will be preferred when more than two wage setters interact strategically and

dynamically. Lau (1996) studies two aspects of labor market institutions (staggered

versus synchronized wage setting, and coordinated versus noncooperative wage ad-

justment) in an intertemporal model with two players. In particular, it is shown that

the two wage setters prefer moving alternatingly when they interact noncooperatively.

By moving alternatingly, the wage setters are able to commit temporarily not to offset

the effects of each other’s action. The strategic benefit of staggered wage adjustment

provides a justification for the assumption of staggered timing pattern used in Fischer

(1977) and Taylor (1980).
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In previous research on the microfoundation of staggered moves, Fethke and Poli-

cano (1986) show that when the number of sectors increases in their earlier model

(Fethke and Policano, 1984) which emphasizes the transmission of employment effects

across sectors, it becomes less likely that staggered wage adjustment will be optimal.

This is because ”... the effect on the aggregate price level of the actions by any one

sector is negligible, and the beneficial externality associated with staggered negotia-

tion is too small to have an effect.” (Fethke and Policano, 1986, p. 872). In light

of their results, it is interesting to examine whether the strategic benefit provided by

staggered wage adjustment is robust with respect to the number of wage setters in

the model economy.

The remaining parts of this paper proceed as follows. Section 2 considers a two-

symmetric-player alternating-move game, and shows how it can be reformulated as

a simultaneous-move dynamic game with alternating payoff functions. Generalizing

from this idea, Section 3 then presents a solution method to obtain the equilibrium

decision rules of multi-player linear-quadratic alternating-move games. Section 4

studies the question of synchronized versus staggered wage adjustment in an economy

with more than two sectors. Section 5 provides conclusions.

2. A MOTIVATING EXAMPLE

Maskin and Tirole (1987) provide elegant analysis of an alternating-move game with

two symmetric players and apply it to a dynamic quantity (or capacity) competition

model. A similar formulation has been followed and used in other papers such as De

Fraja (1993) and Cahuc and Kempf (1997). This section considers a two-symmetric-

player linear-quadratic alternating-move game with general deterministic quadratic

objective functions, which includes the various slightly different functional forms used

by Maskin and Tirole (1987), De Fraja (1993) and Cahuc and Kempf (1997) as

special cases. It shows how this game can be reformulated as a simultaneous-move
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dynamic game with alternating payoff functions. The analysis of this section helps

clarify the underlying idea behind the reformulation procedure. This reformulation

procedure, which is easier to understand in a two-player model, will be generalized

to a multi-player model in the Section 3. The reformulation is an important step for

the algorithm suggested in this paper.

The alternating-move game discussed in this section consists of two symmetric

players, labelled as players 0 and 1. Player 0 (resp. 1) chooses a strategic variable z at

every even (resp. odd) period, which lasts for two periods. As a result, z0,2λ+1 = z0,2λ

and z1,2λ = z1,2λ−1, where zi,t denotes the choice of player i at period t, which is set

either in the current or previous period. Each player maximizes an intertemporal

payoff function, which is given by

r−1X
t=0

βtUi,t, (1)

where 0 < β < 1, and the single-period payoff function Ui,t is given by:

Ui,t = a0 (zi,t)
2 + a1 (zj,t)

2 + 2a2zi,tzj,t + 2a3zi,t + 2a4zj,t + a5, (2)

with i, j = 0, 1 and i 6= j, and a0 < 0.
In order to apply the solution method suggested in this paper, it is helpful to

reformulate the alternating-move game as a simultaneous-move dynamic game with

alternating payoff functions. For the above game, the first step of the reformulation

procedure is to define x0,2λ = z0,2λ and x1,2λ+1 = z1,2λ+1. Note that z0,2λ (resp.

z1,2λ+1) is the choice of player 0 (resp. player 1) when he moves. The second step is

to introduce dummy control variables x1,2λ (resp. x0,2λ+1) for player 1 (resp. player

0) when his opponent moves. The third step is to define the vector of controls xt ≡
(x0,t, x1,t)

0 for the new game, and the vector of state variables

yt ≡ (x0,t−1, x1,t−1, x0,t−2, x1,t−2, 1)0 . (3)
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As a result, the law of motion for the simultaneous-move game is represented by:

yt+1 = Ayt +Bxt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
yt +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xt. (4)

The last step is to express the players’ payoff functions in terms of the variables

of the reformulated simultaneous-move game, instead of the variables of the original

game. It can be observed that, except for the inclusion of an extra term δ (xi,t)
2 in

(6), the single-period payoff function (2) for the original game is equivalent to:

Ui,t = a0 (xi,t)
2 + a1 (xj,t−1)

2 + 2a2xi,txj,t−1 + 2a3xi,t + 2a4xj,t−1 + a5

≡ y0t+1Qi,kyt+1, (5)

for i = 0 (if t is even) or i = 1 (if t is odd), and

Ui,t = δ (xi,t)
2 + a0 (xi,t−1)

2 + a1 (xj,t)
2 + 2a2xi,t−1xj,t + 2a3xi,t−1 + 2a4xj,t + a5

≡ y0t+1Qi,kyt+1, (6)

for i = 0 (if t is odd) or i = 1 (if t is even), where δ is strictly negative, and k = t

mod 2. Sub-section 3.2 will explain why the term δ (xi,t)
2 is included in (6) and why

this inclusion does not affect the final solution (in terms of the choice variables of the

original game).

Combining (3), (5) and (6), the four payoff matrices Qi,k (i = 0, 1; k = 0, 1) for the
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above game are given by:

Q0,0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 0 a2 a3

0 0 0 0 0

0 0 0 0 0

a2 0 0 a1 a4

a3 0 0 a4 a5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

Q1,0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 a2 a4

0 δ 0 0 0

0 0 0 0 0

a2 0 0 a0 a3

a4 0 0 a3 a5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

Q0,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ 0 0 0 0

0 a1 a2 0 a4

0 a2 a0 0 a3

0 0 0 0 0

0 a4 a3 0 a5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)

and

Q1,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 a0 a2 0 a3

0 a2 a1 0 a4

0 0 0 0 0

0 a3 a4 0 a5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

The analysis of this section shows that the above two-symmetric-player linear-

quadratic alternating-move game can be reformulated as a simultaneous-move dy-

namic game with alternating payoff functions, provided that appropriate care is taken

during the reformulation process. This simple example is helpful in understanding the
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approach used in the next section, in which a general multi-player linear-quadratic

alternating-move game is considered.

3. SOLUTION OF MULTI-PLAYER LINEAR-QUADRATIC

ALTERNATING-MOVE GAMES

This section considers a multi-player linear-quadratic alternating-move game (with

the number of players, n, equal to or greater than 2) from period 0 to period r − 1
(where r is assumed to be a multiple of n) in which:

1. player i (i = 0, 1, ..., n− 1) chooses his action zi,nλ+i in period nλ + i for some
non-negative integer λ, and the control remains unchanged for n periods (see

Figure 1),1

2. the intertemporal payoff of each player is given by the expected present dis-

counted value of a stream of single-period payoffs, which are quadratic functions

of the choices of the players, and

3. the law of motion is linear (and, possibly, stochastic).

This game is called AM (which stands for ”alternating moves”). Since it is more

convenient to represent the payoff functions and the law of motion in terms of the

variables of the reformulated game, they will be given later in Sub-section 3.2.

1As in Section 2, z refers to choice variables of the alternating-move game, and x refers to choice

variables of the simultaneous-move game with alternating payoff functions. Moreover, to economize

on the use of notation, some of the symbols are the same as those in Section 2, even though they

refer to different games.
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3.1. A linear-quadratic simultaneous-move dynamic game with alternating

payoff functions

Though the ultimate objective of this paper is to solve a multi-player linear-

quadratic alternating-move game, it is helpful to first consider a more general class

of games: multi-player linear-quadratic simultaneous-move dynamic games with al-

ternating payoff functions. Therefore, this sub-section introduces this class of games

and defines relevant terms.

Consider a finite-horizon n-player (n ≥ 2) linear-quadratic dynamic game from

period 0 to period r−1 (where r is a multiple of n) in which: (a) all players (labelled
as players 0 to n− 1) move simultaneously at every period to maximize the expected
present discounted value of a stream of single-period payoffs, (b) each player’s single-

period payoff functions are quadratic and alternating among n functional forms, and

(c) the law of motion is linear.

Let xt, yt and θt be vectors of dimension n, w and v respectively. At any pe-

riod t, each player is assumed to control just one variable xi,t, and vector xt ≡
(x0,t, x1,t, ..., xn−1,t)

0 represents the players’ controls. Vector yt describes the state of

the system at the beginning of period t, which may include a constant or the players’

choice variables in previous periods. Vector θt represents the random variables, which

are assumed to be realized after the players make their decisions at that period. The

vector of random variables is also assumed to be serially uncorrelated with mean zero

and finite covariance matrix Ω, i.e., E (θtθ
0
t) = Ω for t = 0, 1, ..., r − 1 where E is the

expectation operator. Therefore, the linear law of motion of the system is given by:

yt+1 = f (yt, xt, θt) = Ayt +Bxt + Cθt, (11)

where t = 0, 1, ..., r − 1, and the dimensions of matrices A, B and C can be deduced
easily.
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Define the following n functions, fi (.), for notational convenience:

f (yt, xt, θt) = fi (yt, xi,t, x−i,t, θt) , (12)

where i = 0, 1, ..., n− 1, t = 0, 1, ..., r − 1, and x−i,t ≡ (x0,t, ..., xi−1,t, xi+1,t, ..., xn−1,t)0

is the (n− 1)× 1 vector of controls excluding xi,t.
The intertemporal objective function of player i (i = 0, 1, ..., n− 1) is given by:

E

"
r−1X
t=0

(βi)
t Ui,t

#
, (13)

where βi (0 < βi < 1) is player i’s discount factor and Ui,t is the single-period payoff

of player i at t, which is represented by:

Ui,t = Ui,k (yt, xi,t, x−i,t, θt) , (14)

where k is a non-negative integer smaller than or equal to (n− 1) such that

k = t mod n, (15)

which means that there exists a non-negative integer λ such that t = nλ+k and nλ ≤
t < n(λ + 1). The above specification captures the fact that player i’s single-period

payoff functions are alternating among n functional forms Ui,k (.). Furthermore, it is

assumed that Ui,t quadratic and represented by:

Ui,t = y
0
t+1Pi,kyt+1 =

Ã
Ayt +

n−1P
j=0
bjxj,t + Cθt

!0
Pi,k

Ã
Ayt +

n−1P
j=0
bjxj,t + Cθt

!
, (16)

where bj (w × 1) is column j of matrix B in (11), and Pi,k is a symmetric w × w
matrix.

The structure of the game and the definition of the value functions (to be discussed

later) are summarized diagrammatically in Figure 2.
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3.2. Reformulation of the original alternating-move game as a simultaneous-

move dynamic game with alternating payoff functions

There is a difference in structure between a simultaneous-move dynamic game with

alternating payoff functions and an alternating-move game. To apply the framework

in Sub-section 3.1 to game AM, a corresponding simultaneous-move dynamic game

with alternating single-period payoff functions is constructed by:

1. Defining xi,t = zi,t for all t mod n = i (i.e. the periods when player i moves),

2. Introducing dummy control variables xi,t for all t and all i such that t mod

n 6= i,

3. Representing the linear law of motion according to (11) after appropriately

defining vectors xt, yt and θt,
2 and

4. Expressing the quadratic single-period payoff functions of the players in terms

of the state variables yt, according to (16).

An important point to note is that the dummy control variables do not appear in

any player’s payoff function in the original game AM. Therefore, there are multiple

equilibria (with respect to these dummy control variables) in the above simultaneous-

move dynamic game. In order to avoid this feature, a slightly different simultaneous-

move game, to be called SMAP (which stands for ”simultaneous moves, alternating

payoffs”), is constructed by modifying the payoff functions of all players such that

the term δ (xi,t)
2 (where δ < 0) is added to Ui,t for all t mod n 6= i.3 As a result, the

2To make the notation of an alternating-move game consistent with that in Sub-section 3.1, it is

easily seen that the vector of controls xt in (11) includes not only the actual control variables (of

the original game AM) but also the dummy control variables. See also the motivating example in

Section 2 for the construction of control variables xt and state variables yt.
3Technically, this step is introduced to prevent the non-invertibility of the matrix HtB in (21).

Non-invertibility of this matrix means that the game has either no equilibrium or multiple equilibria.
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single-period payoff function of player i at period t for the constructed game SMAP

can be written as:

Ui,t = y
0
t+1Qi,kyt+1, (17)

where Qi,k (which is also symmetric) and Pi,k in (16) are related by:

Qi,k = Pi,k (18)

for k = i, and

y0t+1Qi,kyt+1 = y
0
t+1Pi,kyt+1 + δ (xi,t)

2 (19)

for k 6= i.
The relationships in (17), (18) and (19) capture the fact that in the constructed

game SMAP, the single-period payoff function of a player is the same as that in game

AM during the periods when he moves, but includes the dummy control variable in

any other period. It will be seen in the proof of Proposition 1 that the optimal choices

of the dummy control variables equal to zero, and so the solution (in terms of the

control variables of the original game AM, and the maximized payoffs of the players)

of the constructed game SMAP will be the same as that of the original game AM,

after ignoring the dummy control variables.

3.3. Solution of the game

Each player is assumed to choose a Markov (or feedback) strategy, i.e., the control

variable is a function of the state variables only. Player i chooses his sequence of

Markov strategies {xi,t (yt) ; t = 0, 1, ..., r − 1} to maximize the intertemporal payoff
function (13) subject to the law of motion (11), the decision rules of other players,

and the initial condition y0.

The solution concept used in this paper is Markov perfect equilibrium (MPE).4 A

4The terminology follows Maskin and Tirole (1987). Kydland (1975) and Basar and Olsder (1999)

use the term ‘feedback Nash equilibrium’ for the same concept.
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sequence of Markov strategy vectors {xt (yt) ; t = 0, 1, ..., r − 1} constitutes a MPE
of this game if for each player i, the sequence {xi,t (yt) ; t = 0, 1, ..., r − 1} maximizes
player i’s intertemporal payoff function (13), taking the decision rules of the other

players {x−i,t (yt) ; t = 0, 1, ..., r − 1} as given. It can easily be seen that the above
simultaneous-move dynamic game with alternating single-period payoff functions is

a generalization of the simultaneous-move dynamic game with time-invariant single-

period payoff functions considered in Kydland (1975).

A natural question arises in multi-agent decision problems is the possibility of mul-

tiple equilibria. In this paper, the equilibrium of the dynamic game is unique, which

is guaranteed for the linear-quadratic model under assumption [A1] in Proposition 1.

To facilitate the derivation of the (unique) equilibrium of the above game, define

the value functions for the players. Let Vi,t (yt) be the maximum intertemporal payoff

that can be attained by player i for the subgame starting with initial state yt at period

t and proceeding to the end of the game, with the optimal Markov strategies of the

other (n− 1) players taken as {x−i,s (ys) ; s = t, t+ 1, ..., r − 1}. The above definition
leads to the following recursive relationship of value functions for t = 0, 1, ..., r − 1:

Vi,t (yt) = max
qi,t(yt)

E {Ui,k [yt, qi,t (yt) , x−i,t (yt) , θt] + βiVi,t+1 [fi (yt, qi,t (yt) , x−i,t (yt) , θt)]}
(20)

where k is defined in (15). Without loss of generality, it is assumed that Vi,r (yr) = 0

for all possible values of yr at the end of the game.

For the constructed game SMAP with quadratic and alternating payoff functions,

Proposition 1 gives the (computationally verifiable) conditions for existence and

uniqueness of the MPE, and an algorithm to compute the equilibrium.

Proposition 1 Assume that [A1]:

b0i (Qi,k + βiSi,t+1) bi < 0
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for i = 0, 1, ..., n − 1 and t = 0, 1, ..., r − 1 where k is defined in (15) and Si,t+1 is
defined recursively in (23). Then there is a unique MPE to the constructed linear-

quadratic simultaneous-move game SMAP. The equilibrium decision rules xt (yt) and

the value functions Vi,t (yt) can be computed recursively by:

xt (yt) = − (HtB)−1HtAyt, (21)

Vi,t (yt) = y
0
tSi,tyt + ci,t, (22)

Si,t = A
0 hI −B (HtB)−1Hti0 (Qi,k + βiSi,t+1)

h
I −B (HtB)−1Ht

i
A, (23)

ci,t = trace [C
0 (Qi,k + βiSi,t+1)CΩ] + βici,t+1, (24)

Ht =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b00 (Q0,k + β0S0,t+1)

b01 (Q1,k + β1S1,t+1)

.

.

b0n−1
³
Qn−1,k + βn−1Sn−1,t+1

´

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

where Si,r = 0, ci,r = 0, I is an identity matrix of dimension w, and the trace of a

square matrix is the sum of its diagonal elements.

The proof of Proposition 1, which is based on Basar and Olsder (1999) and es-

pecially Kydland (1975), is given in an Appendix available from the author upon

request. Note that assumptions (i) and (ii) in Theorem 1 of Kydland (1975) repre-

sent respectively the second order condition and the invertibility of matrix HtB. In

the constructed game SMAP considered in this paper, it is observed from the proof

that the invertibility of HtB in (21) is guaranteed automatically. As a result, only

one assumption, [A1], is required for Proposition 1.

To summarize, the above analysis suggests the following algorithm to obtain the

equilibrium of the multi-player linear-quadratic alternating-move game AM:
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1. Construct Qi,k of game SMAP from Pi,k for all i and k according to (18) and

(19).

2. Start with Si,r = 0 and ci,r = 0 for all i.

3. Calculate the equilibrium decision rules and value functions for i = 0, 1, ..., n−1
and t = 0, 1, ..., r−1 recursively according to (21) to (25). Note that the validity
of assumption [A1] can be checked computationally for every player and every

period.

4. The solution to the original alternating-move game AM can be obtained from

that of the constructed game SMAP, after ignoring the equilibrium values of all

dummy control variables.

3.4. Limit of the finite-horizon games as the horizon grows

An interesting follow-up step is to obtain the MPE of the corresponding infinite-

horizon alternating-move game, interpreted as the limit of a sequence of finite-horizon

games as the number of periods, r, tends to infinity. A nice property in considering

the limiting model is that the equilibrium decision rules, if they exist, will be time-

invariant.5 The computation algorithm described above is applicable, and one can

obtain the limiting equilibrium decision rules and value functions as arbitrarily close

5In an infinite-horizon alternating-move game, the equilibrium decision rules and the value func-

tions take n alternating functional forms and do not depend on calendar time. For example, the

value functions in (20) are replaced by Vi,t mod n (yt) and Vi,(t+1) mod n (yt+1) respectively. Follow-

ing similar analysis as in Proposition 1, it can be shown that the equilibrium decision rules and the

value functions can be calculated recursively by (21) to (25) with the subscript t in Ht, Si,t, ci,t and

Vi,t (.) being replaced t mod n, and subscript t+1 in Si,t+1 and ci,t+1 being replaced by (t+ 1) mod

n. Similar interpretation and results for the infinite-horizon simultaneous-move dynamic games are

found in Kydland (1975).
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as one wants, provided that they converge.6

As an example, consider the infinite-horizon version of the two-symmetric-player

linear-quadratic alternating-move games in Section 2 that satisfy assumption [A1] of

Proposition 1, which can be verified computationally (at every step of the calcula-

tion).7 By iterating (23) with specific values of β, a0, a1, a2, a3, a4 and a5 substituted

in Qi,k (i = 0, 1; k = 0, 1) according to (7) to (10), the matrices Si,t are found to con-

verge numerically to two alternating matrices for each player. It can be shown that,

when t is even, ⎡⎢⎣ x0,t
x1,t

⎤⎥⎦ =
⎡⎢⎣ 0 γ 0 0 α

0 0 0 0 0

⎤⎥⎦ yt =
⎡⎢⎣ α+ γx1,t−1

0

⎤⎥⎦ , (26)

and when t is odd,⎡⎢⎣ x0,t
x1,t

⎤⎥⎦ =
⎡⎢⎣ 0 0 0 0 0

γ 0 0 0 α

⎤⎥⎦ yt =
⎡⎢⎣ 0

α+ γx0,t−1

⎤⎥⎦ , (27)

where α and γ are coefficients depending on β, a0, a1, a2, a3, a4 and a5. As expected,

all dummy control variables are zero at the equilibrium. In terms of the original

alternating-move game, the equilibrium reaction functions are given by:

zt mod 2,t = α+ γz(t−1) mod 2,t−1. (28)

6Maskin and Tirole (1987) use a contraction mapping argument to show that, as the horizon

increases, the finite-horizon equilibrium strategies of their model (with a specific functional form)

converge to their infinite-horizon counterparts. While similar proofs should ideally be performed for

other problems before the suggested algorithm is applied, this line of investigation is not pursued

in Kydland (1975) and this paper which focus on how the solution can be represented in a simple

recursive form and therefore can be obtained computationally. See Kydland (1975, section 5) and

Maskin and Tirole (1987, section 4) for more discussions about the existence and convergence issues

for the infinite-horizon games.
7A necessary condition for this assumption to hold is b0iQi,kbi < 0. While this condition is not

satisfied for every possible quadratic payoff function represented by (2), it is satisfied for many

economic models such as Maskin and Tirole (1987) and De Fraja (1993).

15



The above results are applicable to the class of two-symmetric-player linear-quadratic

alternating-move games including Maskin and Tirole (1987), De Fraja (1993) and

Cahuc and Kempf (1997).8

4. A WAGE SETTING GAME WITH MORE THAN TWO PLAYERS

Lau (1996) examines the aggregate pattern of wage adjustment in a two-sector

model with strategic complementarity and negative externality, and shows that wage

setters prefer moving alternatingly when they interact strategically in a decentralized

environment. In that model, wage setters in a particular sector care about their

real wages, but they can only control directly their nominal wages since the general

price level is also affected by the decisions elsewhere in the economy. Moreover, it is

assumed that an increase (resp. a decrease) in the nominal wage of one sector will,

other things being equal, decrease (resp. increase) the payoffs of other agents, and

that the optimal reaction to an increase (resp. a decrease) in nominal wages elsewhere

in the economy is to have one’s own nominal wage increased (resp. decreased).

This section examines whether the result that nonsynchronization is the preferred

timing pattern in the above model is robust to the number of wage setters in the

economy.9 Specifically, analysis using the solution method in Section 3 is carried out

8For example, the single-period payoff function (15) of Maskin and Tirole (1987) can be expressed

in the form of (2) of this paper with a0 = −1, a1 = −1, a3 = d/2 and a2 = a4 = a5 = 0. It can be
shown numerically that coefficients γ and α of the equilibrium reaction functions (28) obtained by

the solution algorithm suggested in Proposition 1 are the same as those obtained by (20) and (21)

of Maskin and Tirole (1987).
9Note that Fethke and Policano (1986) and this paper only consider whether staggered wage

adjustment is Pareto optimal or not in an economy with many sectors, but not the more difficult

question of whether and how the optimal timing pattern will arise as the equilibrium outcome. It is

quite difficult in general to derive the aggregate timing pattern endogenously in a multi-sector model

(say, by allowing the players the choice in moving from one cohort to another by waiting an extra
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for a three-sector model, and then the implications of the results of this model for an

economy with more sectors is discussed.

In an economy with n (n ≥ 2) sectors, the intertemporal payoff function of each
wage setter is assumed to be given by (13) with βi = β, the horizon r tends to infinity,

and

Ui,t = (zi,t − pt) [h− (zi,t − pt)]− g (mt − pt)2 , (29)

where g (0 < g < 1) and h (h > 0) are constants, zi,t is nominal wage (in log) of sector

i at t, pt is the general price level (in log) at t and is given by:

pt =
1

n

n−1X
j=0

zi,t + et, (30)

and mt and et are money and price shocks at t. The money and price shocks are

assumed to be uncorrelated zero-mean random processes and are realized at the be-

ginning of a period.10 Note that the above model is of infinite-horizon and is a

generalization of the two-sector model in Lau (1996); a detailed discussion (for the

two-sector version) of the model can be found in that paper.

When the number of sectors increases beyond two, however, there is no single

measure of the degree of synchronization. To highlight the role of strategic behavior

in affecting the aggregate pattern of wage negotiation, this section compares the two

polar cases: complete synchronization versus uniform staggering.

period, as specified in Maskin and Tirole, 1987). Maskin and Tirole (1987, p. 963), Ball and Romer

(1989, p. 186) and Lau (1996, p. 1651) discuss some issues related to the modelling of equilibrium

timing pattern and discuss why the Pareto optimal timing pattern is likely to be the equilibrium

outcome.
10In order to apply the solution method suggested in this paper, vector θt (which is assumed to

be realized after the players make their decisions at period t) is defined as θt = (mt+1, et+1)
0
.
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4.1. Complete synchronization

Under this timing pattern, all wage contracts last for n periods and all n sectors

determine wages at the same time, say, when t is a multiple of n. Taking the nominal

wages of the other (n− 1) sectors as given, wage setter i chooses zi,nλ to maximize

E

⎡⎣n(λ+1)−1X
t=nλ

β(t−nλ)Ui,t

⎤⎦ , (31)

where Ui,t is given by (29). Because of symmetry, it can easily be shown that the

equilibrium wage is given by:

zSYNCi,nλ =
(1− βn) (n− 1)h+ 2 (1− β) gmnλ + 2 (1− β) (n− 1− g) enλ

2 (1− βn) g
. (32)

4.2. Uniform staggering

Under this pattern, the wage contracts of the n sectors are renewed alternatingly

such that wage setter i makes decision at period nλ + i. Each contract lasts for n

periods and the contract wage is assumed to be constant throughout the duration.

The reformulation of this alternating-move game to the framework of Sub-section

3.2 is similar to that used in the example of Section 2. Applying the suggested algo-

rithm to the three-sector model, the matrices Si,t defined in (23) are found to converge

numerically to three alternating matrices for each player. As a result, the equilibrium

reaction functions for the three-sector wage setting game is of the following form:

zt mod 3,t = φ0 + φ1z(t−1) mod 3,t−1 + φ2z(t−2) mod 3,t−2 + φ3mt + φ4et, (33)

where φ0, φ1, φ2, φ3 and φ4 are coefficients depending on β and g. Some computed

values are shown in Table 1.
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4.3. A comparison of synchronized and staggered wage adjustment

In the two-sector version of the wage setting game, the results in Lau (1996, p.

1652) suggest that there are two factors influencing the merits of staggered adjust-

ment as compared to synchronization: the importance of strategic dependence and

that of the random shocks. Specifically, the steady state payoff of each of the play-

ers under staggered wage adjustment is always higher than its counterpart under

synchronization if there is no random shock; moreover, the difference of the steady

state payoffs under staggered and synchronized wage adjustment is increasing in the

variance of the price shock but is decreasing in the variance of the money shock.

Regarding the benefit provided by staggered wage adjustment under strategic and

dynamic interaction, the intuition is as follows. By choosing wages at different times,

the action of each wage setter will not be offset by that of his opponent. Therefore,

a player does not need to set a very high nominal wage. Because of the presence

of strategic complementarity, this choice of a low nominal wage further induces his

opponent to follow in the future. As a result, both players obtain higher payoffs

because of the presence of negative externality (with the lower nominal wages leading

to higher aggregate demand).

As the main concern of this section is whether the strategic benefit of a staggered

timing pattern is robust with respect to the number of wage setters, the effect of the

random shocks is of secondary importance and thus not examined. In the following

analysis, the deterministic components of the players’ steady state payoffs under

these two regimes are compared. Under complete synchronization, the deterministic

component of the steady state payoff of each of the three wage setters is given by

−g
³
zSY NC

´2
where zSYNC = h/g; see (32). Under uniform staggering, this is given

by −g
³
zSTAG

´2
where zSTAG = φ0h/ (1− φ1 − φ2), as can be deduced from (33).

Table 2 shows the difference of the deterministic components of the steady state
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payoffs under these two regimes for some parameter pairs (β, g) in two- and three-

sector models respectively.11

From Table 2, it can be seen that all terms are positive, implying that uniform

staggering is preferred to complete synchronization for all parameter combinations of

both the two- and three-sector models. A more important observation is that for a

particular (β, g) combination, the difference is increasing in the number of sectors

in the economy. (Extensive computational checks suggest that this is true for all

parameter combinations of 0 < β < 1 and 0 < g < 1.) These results suggest that a

staggered timing pattern will still be preferred in a decentralized economy with many

wage setters when they interact strategically.

What are the intuitions of the above results? The fundamental source of conflict

in this wage setting model is the interdependence and strategic interactions among

the wage setters. When they move simultaneously, they tend to set a ‘too-high’ level

of nominal wage due to the usual strategic consideration. Nevertheless, each wage

setter’s action is offset by his opponent at the equilibrium, with the resulting high

nominal wages in all sectors leading to a high aggregate price level. Consequently,

all wage setters suffer due to the low aggregate demand. When the number of wage

setters increases (and therefore nominal wage in each sector has less influence on the

aggregate price level, as can be observed in (30)), the externality problem of a higher

nominal wage in any sector on the welfare of other wage setters (through the price

level) becomes more severe. As the strategic benefit of staggered wage adjustment lies

in its ability in overcoming the externalities involved in decentralized wage setting,12

it is logical to conjecture that such benefit of a staggered timing pattern becomes

11For the two-sector model, the corresponding number is calculated from the deterministic compo-

nent of (7) in Lau (1996). Alternatively, it can be obtained by the algorithm suggested in Proposition

1.
12See more discussions about issues associated with externalities in wage adjustment in Layard et

al. (1991).
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more important when the number of wage setters increases. The comparisons of the

wage setters’ payoffs under the two regimes in Table 2 confirm this conjecture.

5. CONCLUSION

Following the analysis of Cyert and DeGroot (1970) and Maskin and Tirole (1987),

linear-quadratic alternating-move games with two players have recently been applied

in many papers. Perhaps because of the complexity in analyzing an alternating-move

game with three players or more, only two-player games have been considered. In

order to study an alternating-move dynamic game with more than two players, this

paper develops a solution method by making use of the similarity of this game and

a simultaneous-move dynamic game with alternating payoff functions. The solution

procedure is applicable to the class of multi-player linear-quadratic alternating-move

games, including the cases of (a) more than two players, and (b) asymmetric intertem-

poral payoff functions of the players (in terms of either different discount factors or

different single-period payoff functions).13

The solution method discussed in this paper is developed for an alternating-move

dynamic game in which only one player moves at each time period. This specification

is a natural extension of the two-player alternating-move game widely used in the

literature. The proposed solution procedure can easily be extended to other cases in

which the number of periods that the control remains unchanged is different from the

number of players. However, in such an alternating-move game in which two or more

players move at a particular period, an assumption which guarantees the invertibility

of a matrix similar to HtB in (21) is also needed; see assumption (ii) in Theorem 1

13As an example, the asymmetric single-period payoff function (1) of Tanaka (1994) can be ex-

pressed in a form similar to that of the four matrices Qi,k (i = 0, 1; k = 0, 1) of Equations (7) to (10)

of this paper with parameters a0 = −1, a1 = −1, ai3 = (d+ si) /2 and a2 = a4 = a5 = 0, where a3
in Qi,0 and Qi,1 (i = 0, 1) are replaced by a

i
3.
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of Kydland (1975) as well. This modification is rather straightforward; moreover, the

validity of this assumption can also be checked computationally.

Applying the proposed algorithm in Proposition 1 to study the timing pattern of

wage adjustment in a three-sector model, it is found that the deterministic component

of the steady state payoff of each of the three wage setters under uniform staggering

is higher than its counterpart under complete synchronization. The result supports

the conjecture that the benefit provided by staggered wage adjustment is robust to

the number of wage setters when they interact strategically.
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 Table 1: Equilibrium reaction functions for the three-sector alternating-move wage game 
 
 

β\g 0.1 0.3 0.5 0.7 0.9 

0.1 0.77 
0.48 
0.44 
0.069 
1.31 

0.72 
0.40 
0.37 
0.19 
1.10 

0.68 
0.33 
0.31 
0.31 
0.92 

 

0.65 
0.27 
0.25 
0.41 
0.76 

 

0.62 
0.22 
0.20 
0.50 
0.61 

 

0.3 0.85  
0.50 
0.38 
0.060 
1.15 

 

0.77 
0.40 
0.31 
0.16 
0.93 

 

0.71 
0.32 
0.25 
0.25 
0.76 

 

0.66  
0.26 
0.21 
0.33 
0.62 

 

0.62 
0.20 
0.17 
0.41 
0.50 

 

0.5 0.93 
0.50 
0.33 
0.053 
1.00 

 

0.79 
0.38 
0.26 
0.14 
0.78 

 

0.72 
0.30 
0.21 
0.21 
0.62 

 

0.66 
0.24 
0.17 
0.27 
0.50 

 

0.62 
0.18 
0.13 
0.33 
0.40 

 

0.7 0.98 
0.48 
0.28 
0.045 
0.85 

 

0.80 
0.35 
0.21 
0.11 
0.64 

 

0.71 
0.27 
0.17 
0.17 
0.51 

 

0.66 
0.21 
0.13 
0.22 
0.41 

 

0.62 
0.17 
0.11 
0.26 
0.32 

 

0.9 0.99 
0.45 
0.23 
0.037 
0.70 

 

0.79 
0.32 
0.17 
0.092 
0.52 

 

0.70 
0.25 
0.14 
0.14 
0.41 

 

0.65 
0.19 
0.11 
0.18 
0.33 

 

0.61 
0.15 
0.086 
0.21 
0.26 

 
 
 
Note: 
 
For each (β, g) combination, the five numbers represent respectively the coefficients 0φ , 1φ , 2φ , 3φ  and 

4φ  of the equilibrium reaction function in (33) of the main text. 
 

 

 

 
 



 
 
Table 2: The difference between a wage setter's payoffs under staggering and synchronization 
 
 
 

β\g 0.1 0.3 0.5 0.7 0.9 

0.1 0.68 
1.50 

0.15 
0.42 

0.058 
0.21 

0.022 
0.12 

0.005 
0.078 

0.3 1.47 
4.53 

0.34 
1.25 

0.13 
0.63 

0.054 
0.37 

0.013 
0.23 

0.5 1.86 
6.84 

0.45 
1.90 

0.18 
0.96 

0.075 
0.57 

0.019 
0.36 

0.7 2.09 
8.27 

0.52 
2.33 

0.22 
1.19 

0.091 
0.72 

0.023 
0.46 

0.9 2.21 
9.05 

0.57 
2.61 

0.24 
1.35 

0.10 
0.82 

0.026 
0.54 

 
 
 
Note: 
 
For each (β, g) combination, the first (resp. second) number represents the deterministic component of 

 in the two-sector (resp. three-sector) wage setting game, where U  and h / ) U  -  U ( 2SYNCSTAG STAG

U SYNC  are respectively the steady state payoffs of a player under uniform staggering and complete 
synchronization. 
 

 

 

 
 



 
 Figure 1: A multi-player alternating-move dynamic game 
 

Time

Player (n-1) chooses zn-1,r-1

Player (n-2) chooses zn-2,r-2

Player 0 chooses z0,0 (lasting for n periods)

Player 1 chooses z1,1 (lasting for n periods)

0 1 r-2 r-1

Note: r is a multiple of n.

Time

Player (n-1) chooses zn-1,r-1

Player (n-2) chooses zn-2,r-2

Player 0 chooses z0,0 (lasting for n periods)

Player 1 chooses z1,1 (lasting for n periods)

0 1 r-2 r-1

Note: r is a multiple of n.
 
 
 
 
 
 Figure 2: A multi-player simultaneous-move dynamic game with alternating payoff functions 
 
 

0

Note: r is a multiple of n.

Time

Ui,n-1(.)
Vi,r-1(yr-1)Ui,n-2(.)

Vi,r-2(yr-2)

Ui,0(.)
Vi,0(y0)

Ui,1(.)
Vi,1(y1)

1 r-2 r-1

Vi,r(yr) 0

0

Note: r is a multiple of n.

Time

Ui,n-1(.)
Vi,r-1(yr-1)Ui,n-2(.)

Vi,r-2(yr-2)

Ui,0(.)
Vi,0(y0)

Ui,1(.)
Vi,1(y1)

1 r-2 r-1

Vi,r(yr) 0

 
 
 
 
 

 

 
 




