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Abstract. We present a geometrical approach for designing robust min-
imum variance (RMV) beamformers against steering vector uncertain-
ties. Conventional techniques enclose the uncertainties with a convex
set; the antenna weights are then designed to minimize the maximum
array output variance over this set. In contrast, we propose to cover the
uncertainty by a second-order cone (SOC). The optimization problem,
with optional robust interference rejection constraints, then reduces to
the minimization of the array output variance over the intersection of
the SOC and a hyperplane. This is cast into a standard second-order
cone programming (SOCP) problem and solved efficiently. We study the
computationally efficient case wherein the uncertainties are embedded
in complex-plane trapezoids. The idea is then extended to arbitrary un-
certainty geometries. Effectiveness of the proposed approach over other
schemes and its fast convergence in signal power estimation are demon-
strated with nnumerical examples.

1 Introduction

Antenna arrays constitute an important part in modern communication sys-
tems, serving to introduce extra degrees of freedom in beampattern synthesis,
spatial filtering and/or detection of incoming signals. The design of antenna ar-
rays when precise system parameters are available is a well-studied problem; for
instance, the celebrated minimum variance (MV) beamformer, designed using
Capon’s method [1], has the property that the variance of the combined (i.e.,
weighted and summed) array output is minimized, while a unity gain is main-
tained in the look direction. However, in practical situations, exact models of
the antenna array are unavailable. Uncertainties in the steering vector of the
desired signal arise due to a multitude of reasons including array calibration
errors, uncertain angle-of-arrival (AOA), amplifier imperfections and environ-
mental inhomogeneities [2-14]. These uncertainties, when not accounted for in



the design process, can lead to severely degraded performance. For example, the
performance of the MV beamformer is known to be sensitive and susceptible to
mismatches in the presumed and actual steering vectors [14]. Hence we have the
“robust antenna weight, design problem,” i.e., the design of antenna weights such
that the performance can be guaranteed in spite of the presence of uncertainties.

Some approaches towards robust antenna weight design can be found in
[15-21] and the references therein. For example, point and derivative constraints
[15-17] imposed on the mainbeam can be used to design antenna arrays that offer
tolerance against AOA mismatch, but their performance subject to other kinds of
mismatches is hard to predict. The eigenspace-based beamformer in [18] is effec-
tive, although only when the signal-to-noise ratio (SNR) is high. Other methods
in [17,19-21] share a similar framework wherein & certain form of weighted diag-
onal loading or quadratic penalty is added to the objective or cost function. The
weight determination of that penalty, however, is not clear in practice. Further,
these techniques assume, either explicitly or implicitly, that the uncertainty is
isotropic (i.e., equally probable around the nominal steering vector) which is
generally not the case. Tn other words, these methods or algorithms may result
in overly conservative designs at the expense of other considerations such as
power, complexity, and feasibility.

Recently, a number of techniques based on mathematical programming have
been proposed for the robust antenna weight design of narrowband systems called
robust MV (RMV) beamforming [2-12]. The basic idea underlying these tech-
niques is to model the steering vector uncertainties as a convex set or part of
a convex set. The antenna weights are then determined so as to minimize the
maximum array output variance (or an upper bound thereof) over the steering
vector uncertainty set. Tn [3-7], the uncertainty set is covered by a hypersphere?
or an ellipsoid around the nominal steering vector. It can be shown that this
class of beamforming techniques belongs to the diagonal loading approach, of
which the amount of loading can be directly determined from the uncertainty
set. The resulting optimization problem is a second-order cone programming
(SOCP) problem [22, 23], which can be solved efficiently via interior point al-
gorithms, e.g., [24-27], or by the Lagrange multiplier method, e.g., [4,6]. Sim-
ulations have shown the superiority of this SOCP beamforming approach over
other popular robust beamformers in adaptive arrays [3]. Nonetheless, uncer-
tainty modeling using a worst-case hypersphere [3] is still isotropic and does
not exploit the structure of the uncertainty, and may sometimes lead to im-
practical designs of high power requirement or even programming infeasibility.
Ellipsoidal uncertainty modeling [4-7] provides tighter uncertainty modeling and
generally produces more accurate results in applications such as signal power es-
timation [6,7]. A different design approach is to encompass the uncertainty set
by a polyhedral cone [8]. A drawback is that the use of a polyhedral cone with

% Here hypersphere and ellipsoid (flat ellipsoid) respectively refer to the n-dimensional
counterparts of a Euclidean ball and the injective (non-injective) affine mapping
of a Euclidean ball. A polyhedral cone is the set C = {z|Az <0}, ie., C is the
intersection of finitely many linear half-spaces. Specific details can be found in [2-8].



limited extreme rays (the basis rays of a cone) can again result in overly con-
servative constraints, while increasing the number of extreme rays will cause an
exponential growth in the programming complexity and prohibit its use in larger
arrays. Moreover, determination of the polyhedral cone angle in relation to the
uncertainty set was not pursued further in [8].

The main contribution of this paper is that it extends the idea of a polyhedral
cone to a second-order cone (SOC), and develops a constructive way, employing
either a simple heuristic or a theoretically optimal SOCP approach, to obtain
a tight SOC bounding the uncertainty set (also see [2]). The convexity of the
optimization constraint is exploited such that the optimization process can be
largely reduced from the whole uncertainty set to the intersection of the bounding
SOC and a hyperplane outside the set. A special case of modeling steering vector
uncertainties using complex-plane trapezoids is studied in detail. For practical
reasons, extension of the proposed scheme to robust interference rejection is
also considered. The corresponding narrowband beamforming task is formulated
and efficiently solved as an SOCP problem. Numerical examples show that this
SOC RMV beamformer exhibits tight uncertainty modeling, very low power
requirement, and fast convergence in signal power estimation.

The paper is organized as follows. Tn Sect. 2, preliminaries in MV beamform-
ing are reviewed. Sect. 3 proposes a generic algorithm for RMV beamforming
utilizing a geometrical SOC bounding idea. Reduction of the optimization pro-
cess from a convex set to the circumference of a hyperellipse is described. An
application of the proposed SOC RMV beamforming algorithm is demonstrated,
wherein steering vector uncertainties are embedded in complex-plane trapezoids.
Simplification of the techniques and their extension to arbitrary uncertainty ge-
ometries are also discussed. Sect. 4 presents numerical examples and verifies the
effectiveness and power efficiency of the proposed approach over other schemes.
Finally, Sect. 5 presents the conclusion.

We close this section with a description of the notations used. The set of real
numbers is denoted by R and the set of complex numbers by €. RY and ¢V
denote the set of real and complex vectors, respectively, with N components. The
set Q is conver if vi,vo € € implies p1vy+pave € Q for every real pr,p2 > 0 that
satisfy p; + p2 = 1. A general convex optimization problem is the minimization
of a linear function over a convex set {2, namely,

min(c*x) subject to x € Q (1)

where ¢ and x are complex or real vectors, and (o)* denotes conjugate transpose
which is equivalent to transpose, (o)T, for real vectors. A second-order cone or
SOC is a special convex set whose definition, for an “upright” SOC of dimension
2N and a cone angle parameter A, is

o= {)

where ||o|| denotes the Euclidean norm. The conceptual visualization of an SOC
is shown in Fig. 1. Clearly, A is a parameter that controls the cone angle, namely,

xl,AER,XgEIR2N_17)\Z()’$1Z/\HX2H} ) (2)
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Fig. 1. An upright SOC with a variable cone angle. Z is the unit vector along the
symmetry axis

a large A corresponds to a “narrow” cone and vice versa. Andz =[10--- 0]7 ¢
IR?Y is the unit vector in the direction of the symmetry axis of K. A second-
order cone programming or SOCP problem [22, 23] with real-valued variables
(indicated by tildes on top, as will be followed throughout this paper) takes the
form of

min(&? %) subject to X € Ky . (3)

It should be noted that although SOCP represents a subclass of the more general
semidefinite programming (SDP) [28] (namely, the optimization of a linear func-
tion over linear matrix inequalities [29]), dedicated SOCP solvers, e.g., [25,26],
should be used [22] because of their much better worst-case complexity than
general SDP solvers such as [27].

2 Background in Minimum Variance Beamforming

The output x(¢) € €V of an N-element antenna array is
x(t) = a(0)s(t) + AiSi(t) +n(t) | 4)

where a(f) € €V is the steering vector of the desired narrowband signal s(t)
arriving from an angle ¢, A; is an N x L matrix whose Ith column, a(6;), is
the steering vector of the [th interfering signal in S;(t) = [s1(¢) -+ s(t)]7, and
n(t) € €V is the additive noise component. The combined output of the array
subject to a complex weight w is

y(t) = wx(t) . (5)



The interference-plus-noise covariance matrix Rj, is defined as
Rin = E ((A;iSi(t) + n(1))(AiSi(t) +n(t)") , (6)

whereas the sample covariance matrix Ry is defined, and approximated by M
recently received samples (called snapshots), as

M

* 1 *

Ry = Blox) & 22 3 x(p)x(p)" - (7)
p=1

One of the metrics for the performance of a beamformer is the signal-to-interference-

plus-noise ratio (SINR) designated as

[wa(6)” o?

w*Rinw

SINR = , (8)

with o2 being the signal power.

2.1 Capon Beamformer

The MV beamformer is obtained by solving
min(w*Rxw) subject to w*a(f,) =1 , (9)

where 8, and a(f,,) are the presumed (or nominal) AOA and steering vector re-
spectively. If this presumed steering vector matches the physical steering vector,
we have the optimal solution of (9) given by the Capon’s method [1]

R;Ia(ep)

a6) Ry a(fy) (10)

mv —
In beampattern synthesis, it may be desirable to allow for AOA uncertainty
by maintaining unity gain in a small spread of angles [4]. This is done in the
MV beamforming by adding extra equality constraints. For example, defining
the matrix C = [a(f,) a(fp1) a(fp2) - - -] where 8,;’s are angles around 6, and
replacing the optimization constraint in (9) by

C*'w=d (11)
where d is a column vector of ones, the optimal weight vector is now [4, 12]
W = R;IC(C*RIC) 7 . (12)

This formulation can also be used to introduce nulling at the interference angles
if we define, with respect to (4), C = [a(f) A;] and d = [1 & --- £1]7 where
§>0,1=1,2,--- | L, are the desired interference gains (some small real values
or zero) for signals coming from 6;. Roughly speaking, the introduction of each
equality constraint at a certain angle reduces one degree of freedom in the choice
of the weight vector. Therefore, smaller arrays are more likely to yield infeasible
designs when the constraints are stringent.



Fig. 2. Uncertainty region of a steering vector element (annulus sector in bold line)
bounded by a trapezoid of vertices a}y, ajs, ajs and ajs. Here au, Bi, Vi, 6i, ¥ >0

2.2 Robustness against Signal Steering Vector Uncertainties

Let the signal steering vector bea = [a; --- any]? € €. Referring to Fig. 2, an
element a; of a may be subject to phase uncertainties, a;, §;, due to uncertain
AOA, and phase and gain uncertainties, ¥;, v; and J;, due to amplifier tolerance.
Thus in practice a¢; may assume any value inside the bolded annulus sector in
Fig. 2. Let © C €V be the set that contains all the possible as (corresponding
to all possible combinations of a;, ¢ = 1,2,--- , N). An RMV beamformer [2-8]
is then designed by maintaining at least a unity gain for all members in :

min{w*Ryw) subject to Re(w*a) > 1, Va € Q (13)

where Re (o) and Im (o) (to appear later) give the real and imaginary parts of
the argument.

2.3 Robustness against Interference Uncertainties

Tn theory, the programming solution to (13) (namely, minimizing the output
power subject to signal protection) automatically achieves interference rejec-
tion. But in practice the tolerance in the amplifier implementation may render
different gains and phases from the designed values. In mobile or imperfect chan-
nel scenario, drifting of the interference angle(s) may also occur between updates
of weights in an adaptive array. To maintain a high SINR, as will be seen in the
numerical examples, it is of value to explore robust interference rejection. Similar
to the case of the nominal steering vector, uncertainties in interference rejection
can be lumped as uncertainties in the interference steering vectors. Suppose a;
(1=1,2,---,L)is contained in the uncertainty sets ; C @V, then it is desirable



that the array look direction constraint and the interference rejection constraints
hold simultaneously, namely,

min(w*Ryxw) subject to

Re(w*a) > 1, Va € Q (14)
||W*al|| Sfl ,Val € Ql ,l: 1’27... ’L .

The inequality settings, instead of equalities, in the interference rejection con-
straints lend themselves to compatibility in programming formulation as will
become evident later.

2.4 Solution via Convex Optimization

One numerical approach towards the solution of (14) is based on convex op-
timization. The first step is to embed the uncertainty sets € and €;, [ =
1,2,---, L, in convex sets (if they are not already convex); see for example, [2-9].
An example is to use the convex hulls, in the form of convex polytopes?, of Q
and €;. Then, from convexity, it suffices to check that the look direction con-
straint and interference rejection constraints are satisfied on the vertices of these
uncertainty convex hulls. Therefore, by choosing the enclosing convex sets ap-
propriately, an infinite set of optimization constraints can be reduced to those
on the vertices of a hull, or on the curved boundary of an arbitrary convex
geometry. Nonetheless, the complexity of the hull, in terms of its number of
vertices, still increases exponentially with the number of antenna element N
and prohibits practical computation. In [3-8], hyperspheres, nondegenerate and
degenerate (or flat) ellipsoids, and polyhedral cones are respectively used to en-
close the uncertainties, and the programming problem is cast as an SOCP or
a quadratic programming problem of order linearly dependent on N. It should,
however, be noted that the approach based on hyperspheres does not exploit the
uncertainty structure and may result in overly conservative designs with high
power requirement or even render the design problem infeasible. Also, robust
interference rejection is not addressed in these works. Tn contrast, we propose
an approach that exploits the uncertainty structure and provides robustness
against steering vector uncertainties regarding both the desired and interfering
signals. The final beamforming problem is also an SOCP problem of size linearly
dependent on N.

For convenience of computation and coding, complex quantities are often
transformed into real quantities. Indicating real-valued matrices and vectors by
tildes, we define

eI o] R o R
R = [ ]

“ A polytope is a finite region of n-dimensional space enclosed by a finite number of
hyperplanes. And the convex hull of a set of points is the smallest convex set that
includes the points.



Starting with look direction constraint only, (13) can be equivalently written as
T~

min(w” Ry W) subject to w'a > 1, Va € (16)
where ©Q is a set derived from © by similarly stacking the real and imagi-
nary parts of each element in €2. To incorporate the interference rejection con-
straints in (14), we note that the magnitudes of the combined gains ||w*ay]|,
[=1,2,--- L, involve a quadratic relationship of the real and imaginary parts
of w*a; that describes a circle of radius &. To reduce the constraints into linear
ones for SOCP formulation, two sufficient (stronger) conditions governing the
real and imaginary parts are imposed, namely,

—S<wha <
_s[01 va, € (17)
_ & T 3 £
5<W [—I 0} a; < o5
fori =1,2,---,L, where 0 and T are zero and identity matrices of compatible

dimensions, and €2, being analogous to €2. It can be seen that (17) confines the
real and imaginary parts of w*a; to be within a square inscribed in the circle
of radius &. Accordingly, (17) can be appended to the constraint list in (16) to
achieve robust interference rejection. Since increasing the number of constraints
may also lead to infeasibility in the design problem, robust interference rejection
is more likely to be realized in larger arrays where more freedom is available.

2.5 Signal Power Estimation and Array Output Power

A main goal in many antenna array applications is to estimate the signal power
02 [6,7). In traditional beamforming, this is simply given by

o2 mwh Rawny - (18)

A much more accurate estimate proposed in [6,7], with the elimination of a

“scaling ambiguity” by taking into account ||a(8)|| = v/N, can be shown to be
1| RacWemy |

s N w? RxWimy
where Wy is the solution to the RMV beamformers in [3-7] or the present
work.
Another power related issue is the array output power. A set of appropriately

designed antenna weights will significantly suppress interference, therefore from
(4) and (5) we have

y(t) = w'x(t) ~ w*a(0)s(t) + w'n(t) (20)

where a(f)s(¢) is a column vector with time (phase) shifted versions of the desired
signal s(¢) (e.g., see [7]). If we further assume that the signal is random over time



and uncorrelated with the noise (assumed to be white Gaussian), then the mean
array output power is

E(y(y®)*) = o |wil + o3 [[w]’ (21)

where o2 is the noise power. The constraint of the Capon beamformer (namely,
w*a(f,) = 1) will put the first term on the right of (21) to ¢ only, but in the
robust formulation the more general form in (21) holds. A major implication
is that if an analog beamformer is built, the power of the array output is then
proportional to ||w]|” (see also [9,22]). While in digital implementation, the input
needs to be normalized by ||w||” to prevent overflow due to finite wordlengths.
In both cases, ||w|[* (= |||/ in (15)) serves as a metric that should be kept as
low as possible. Since ||w||> can also be interpreted as the power output of an
array subject to unit-power signal and zero noise and interference, it is given a
unit of watt.

3 An SOC Bounding Approach

As we have observed, the main drawback in directly solving (16), either stan-
dalone or with additional constraints in (17), is the exponential growth in the
problem size when the number of antenna elements, N, grows. Qur main con-
tribution is an algorithm, called the SOC RMV beamforming algorithm, that
reformulates the original problem so that the order of constraints grows linearly
with N. In addition, the uncertainty structure and convexity in the optimization
constraints are exploited, thereby leading to accurate and power-efficient beam-
formers. To simplify notations, we assume in the rest of this paper that {2 and
Q; (and consequently €2 and €2;) are some convex sets that encompass the signal
and interference steering vector uncertainties a and a; (a and &;),/=1,2,---, L.

Two theorems central to our proposed algorithm, which are related to the
convexity in the optimization constraints, are given here:

Theorem 1. (Robust look direction constraint) Let Q = Co{ay, s, -+ ,an},
where Co denotes the convex hull of a set, i.e., all convex combinations of ils
elements. Moreover, let 0 ¢ §2. Let Ky be any SOC with & C K. Suppose that H
is a hyperplane separating 0 and . Define the hyperellipse £ by € = KxN'H and
let O denote its boundary. Under these conditions, consider some W € RN, If
wl'a>1 for alla € 92, then wT'a > 1 for all & € €.

Remark 1. The implication of Theorem 1 is that the condition w7a > 1 for all
a € 9¢ is sufficient for robust look direction constraint in (16) to hold.

Remark 2. The condition 0 ¢ Q automatically holds for any physically mean-
ingful set of steering vectors.

Proof. The hyperplane K can be parameterized as

1} (22)

H={a|bTa



for some b € IR*N. Since H separates 0 and fl, we must have bTa; >1,4i=
1,2,--- ,n. Define 1; = ~(bT€1i)*1. Then, by the definition of X, we must have
7;8; € Kx. Moreover, 7;bTa; =1, or 7;4; € H. Thus 7;8; € €.

Now suppose that for some w € R?", w7a > 1 for all & € 2. Then, as £ is
a convex set, we must have w’a > 1 for all a € &, and in particular, we must
have

nwla; >1,i=12-,n
Consequently
wla, >7'>1,i=12,--.n, (23)
concluding the proof. O
Theorem 2. (Robust interference rejection) Let Q = Cof{an,ap, - ,am} and

0¢ Q,. Let K be any SOC with Q; C K. Suppose H is a hyperplane such that
0 and S lie on the same side of it, with_the Euclidean distance of 0 from H
exceeding that from any point in Q (i.e. , Q is “between” 0 and ‘H). Define the
hyperellipse € by €, = Kx NH and let 561 denote its boundary. Under these
conditions, consider some w € R*N. If |v~vTél| < w for all a5 € 0F;, then

|v~vTél| <y for all a; € fll.

Remark 3. Let w [(I) OI} w and y; = \/, Theorem 2 implies that the con-
ditions |v'§7Téil| < % and |WIT51| < % for all 8, € 05,1 = 1,2,--- | L, are

sufficient for the robust interference rejection constraints in (17) to hold.
Proof. Follows similarly to that of Theorem 1, and is therefore omitted. O

With reference to Fig. 3, the proposed SOC RMV beamforming algorithm is
summarized in the following three steps:

1. Fit an SOC around the hull of €. If robust interference rejection is needed,
also find SOCs around the hulls of €2;,, [ =1,2,--- , L.

2. Intersect the SOC with a hyperplane tangent to the bottom of the hull of
Q, thus forming a hyperellipse with boundary o (Fig. 3(a)). In the case of
robust interference rejection, hyperplanes tangent to the top of the hulls of
Q; are found, forming hyperellipses of boundaries 5;, I = 1,2,--- | L (Fig.

3. Transform (16) into an SOCP problem and optimize with respect to the
stronger conditions a € ¢, and 8; € 5;,1 = 1,2,--- | L, in (17) for robust

interference rejection.

It can be seen that the constraints in step 3 represent two sets of stronger
conditions. Specifically, by Theorem 1, if w'a > 1 in (16) is satisfied for all
a € g, it is automatically satisfied for all & on the hyperellipse, as well as all
a € © above the hyperellipse. Similarly, if the conditions in (17) are satisfied for
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Fig. 3. A second-order cone encompassing: (a) £ with a lower hyperellipse; (b) £2; with
an upper hyperellipse

alla; € 64,1 =1,2,---, L, then by Theorem 2 they are automatically satisfied
for all &; on the hyperellipse, as well as all 4, € €; below the hyperellipse. The
following demonstrates an application of the proposed algorithm wherein the
steering vector uncertainties are modeled by complex-plane trapezoids.

3.1 Parametrizing the SOCs Bounding Q and

In this step, € and €;, ] =1,2,--- | L, are obtained by modeling steering vec-
tor uncertainties using complex-plane trapezoids. Subsequently Q and Q; are
derived by stacking the real and imaginary parts of each element in € and €2;.
Nlustration is provided only for the location of the SOC bounding €2, while that
for the case of €2; proceeds in exactly the same way. Recalling from Sect. 2 and
revisiting Fig. 2, an element a; of a = [a; - -+ ay ]’ may assume any value inside
the annulus sector due to phase uncertainties, «;, 3;, resulting from uncertain
AOA, and phase and gain uncertainties, v;, v; and §;, resulting from amplifier
imperfections. A sensible way, which also serves as a stronger condition, is to
encompass the annulus sector using a trapezoid with vertices al, a},, a}s, a}, as
in Fig. 2. The actual a; may then be regarded as a convex combination of al;,
aly, a'y and aly, i = 1,2,---, N. By defining the set €' C €V as the union of
these vertices,

ki=1,2,30r4
Q' = v;=[ay, a’zkz"‘a&kN]Te(DN =12, N ) (24)
j:1727"' 74N

it is clear that every point in ' constitutes a vertex of the minimum convex hull
of Q. As discussed before, optimization over €2 can be replaced by optimizing
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Fig. 4. Rotation of €' or fl; into the bounding SOC using Householder transform

over every point in §¥'. Apparently, the real-valued counterpart of €', Q' ¢ R?",
is formed by stacking the real and imaginary parts of every point in €/, i.e., if
v € ', then v € Q' is defined as v = [Re(vT) Im(v7)]T. Obviously, €' also
constitutes the vertices of the minimum convex hull of Q. Instead of directly
finding the SOC that encloses €', ¥ is first rotated, using the angle and distance
preserving Householder transform [8], into the orientation of the upright SOC
to find the SOC that just contains the rotated €', denoted as HEY (or Hv for
all v € ) in Fig. 4. Defining a unit vector & = [Re(c”) Im(c”)]” € R*" in the
direction of €', we have

> (25)

where [|¢|| = [le]| = 1. H is a symmetric orthogonal matrix such that H = HT =
H~!. Now the question remains as to how to choose the unit vector € for the
tightest SOC that encompasses HQ', denoted as Ky, . Two approaches are in
place that offer a tradeoff between accuracy and computational load.

Optimal Method. This method finds the ¢ that gives the tightest possible
SOC. To do this we notice from (2) that an SOC, Ky, that contains a particular
v must satisfy

r< ([
((ﬁé Tﬁv)/H (1 - ﬁé(ﬁé)T> v

= (#1)/|lv - (#7&)¢|
=1

0--- 0] A1¥)/||aiag [01--- 1] F¥
)

(26)

IV FIFTE* =1



The second line in (26) stems from the fact that H¢ =% = [10 --- 0]7, and the
third line has the geometrical interpretation that it is the projection of v onto ¢
divided by the norm of components in v that are orthogonal to €. Apparently, A is
independent of H because the cone angle is preserved by the transform. Finding
the tightest SOC is equivalent to choosing a € that maximizes the minimum A,
denoted by Amin, such that £y .. contains Hv for all v € €'. This statement
can be restated as a programming problem in variable ¢:

T

<
ot

) ) where ¥7€ >0 , (27)

max ( min —
[|6||=1( vesy <HVI

or qualitatively, to choose a unit vector € such that the minimum projection of
those unit vectors v/||¥|| (¥ € €') onto & is maximized. Clearly, & and v/||¥||
are all on the surface of the unit sphere. Also, the projection of v/|[¥|| (¥ € Q')
onto ¢ can equivalently be regarded as the projection, which is a real quantity,
of v/||v]| (v € ) onto ¢. With reference to Fig. 2 and by symmetry argument,
the vector ¢ that gives the tightest SOC must have each of its components lying
along the symmetry axis of the corresponding trapezoid. Using (o), to denote the
ith component of a vector and arg (o) to denote the angle of a complex quantity,
we have

arg ((c),) = arg(a;, +a,) where i =1,2,--- | N . (28)

Since only the projection is of interest, the number of v; in (24) to be considered
is largely reduced. This is because due to symmetry about (c),, a vector in (24)
with a particular k; = 1 produces the same projection as another vector with
that particular k; = 2, and the same holds for the case of k; = 3 and k; = 4.
So there are effectively 2V v;s (j = 1,2,---,2") of interest whose k; = 1 or
336 =1,2,---,N). Next, to find the magnitudes of those components in ¢, we
define a real vector & that holds the element-wise magnitudes of ¢, i.e.,

@), = |(c),| wherei=1,2,--+ N |, (29)

and another set of real vectors ¥; such that
; ) W
(V) = ‘(—Vﬁ ) cos (704@ - Bi 24
lvsll/

2
for j = 1,2,---,2" as described earlier. The problem of maximizing the mini-
muin projection in (27) is then equivalent to the SOCP [22, 23] problem:

) wherei=1,2,--- ,N ,  (30)

max(7) (or min(—7)) subject to

{O<T§\7]Téwherej:1,2,~~,2N (31)
el <1
for which the optimization variables are 7 and €. The condition [|&]| = 1 will

automatically be satisfied because the last constraint in (31) is tight for any



optimal solution. It can be seen that (31) is essentially a linear programming
problem except for the last quadratic constraint. Such SOCP structure can be
solved using, say, the SOCP solver in [26]. The optimal 7 thus obtained consti-
tutes an optimal solution of (27) and can be substituted back into (26) to get
the maximum Ap;,, namely,

)\min iy ——————— (32)

The direction vector ¢ (and thus €) corresponding to this tightest SOC, Kx,..,,
is then obtained through combining & and (28). Referring to Fig. 4, a simple and
obvious choice for the hyperplane intersecting the SOC (to be used in step 2 of
the algorithm) is the one that is normal to the symmetry axis of the SOC. The
parameter ry;,, which specifies the height of the supporting hypercircle resulting
from the intersection, is calculated from the minimum projection of v (¥) onto
¢ (€). This is obtained in a straightforward manner by

Tmin = [Re([a'n ayy -+ ayy 1) Im([ayy ay - a%fl])] H?sgg” - (3

The tightest SOC that contains a particular €'; (the interference counterpart
of @), 1 =1,2,---,L, is found in the same way except now the height of the
upper hypercircle is of interest, which is

o = (R ay - ) Tl oy - o D] | gy | (34)

where the aj,s and ¢ stand for the uncertainty vectors and orientation for a; and
Q;, respectively.

Centroid Method. A simple heuristic that largely reduces the computation
of ¢ from its exponential dependence (see (31)) to linear dependence on N, at
a small expense of accuracy, is to approximate the optimal ¢ by the normalized
(unit-length) centroid of all points in €. Defining

a'y=[a, ay, - ay, ]t k=1,2,3,4, (35)

Using the same notational convention as in the optimal method, A\, is obtained
by finding the particular ¥; that decorrelates with € as much as possible. This
can be achieved in just N — 1 comparison steps: First, the components of ¢ are
along the symmetry axes of the uncertainty trapezoids, so the ¥; definition in
(30) still applies. Besides, € is now a predetermined quantity as given by (36).

¢ is given by

4

POL

k=1

(36)




The next step is to arrange the magnitude components of ¢ in a particular order
so that they form a descending sequence; Awin is then given by a ¥; whose NV
components are chosen to form an ascending sequence in that particular order.
Since there are N such choices of ¥, Amin can be determined within N — 1
comparisons. In contrast, it generally requires 4N comparisons to find the ra-
dius of the smallest hypersphere (centered at the presumed steering vector) [3]
bounding the annulus sector in Fig. 2. Likewise, rmin and rmax are obtained by
(33) and (34) respectively. Experiments have shown that with trapezoidal un-
certainty modeling, the RMV beamformers designed using this centroid method
perform almost identically as those obtained by the optimal way. Therefore, in
practical situations the centroid approximation of ¢ should always be used when
computation is of concern, especially when N is large.

3.2 Transformation of Constraints into SOC Formulation

As discussed, the robust look direction constraint in (16) can be realized under
a stronger condition, namely, on the boundary ¢ of the lower hypercircle. In Fig.
4, the boundary g, in a rotated manner, is

where u C ]RQN_l, [ul| = m . (37)

min

ﬁg: l:'rmin:| CK)\
u

Noting ¢ = H{(Hg), the gain constraint in (16) becomes

wT (| {’“‘“&in}) >1 . (38)

Let H; € RV be the first row of H, and Hy € RN D3N he H without
the first row, (38) can be rewritten as

—uTHoW < rpnHiw — 1 . (39)
When & = — (rmin/Amin) Haw/ Hﬁzvv

(39) is achieved. And the robust look direction constraint takes the form of an
SOCP constraint;

, the maximum of the left hand side of

Tmin v ~
How
/\min

‘ S rminﬁlﬁ -1. (40)

By the same token, the robust interference rejection constraints in (17) can be
realized under a stronger condition, namely, on the boundary &; of the upper
hypercircle. Tn Fig. 4, the boundary &;, in a rotated manner, is given by

where @ ¢ R*Y ™!, |la/| = ;m— . (41)

Let Hy; € IRV be the first row of H, and Hjs € RV D72 e H without
the first row, the first equation in (17) can verified to be equivalent to

min

I:Ia'l = [Tn%lax:| C K,

&

N

rmax

(42)

Hl2V~VH < min <_rmalel‘x’7 rmalel".V) +

)\min



Also, define

= = [0-I
J_H[IO] : (43)
and let ju e RY2Y pe the first row of j, and jlg € REN-DX2N pe T without
the first row, the second equation in (17) is equivalent to

Tmax

va*v‘ < min (—rmalelv*v, rmaxj“v'if> + & ) (44)

V2

min

3.3 Beamformer Optimization Problem in SOCP Format

Finally, let Ryx = UTU be the Cholesky factorization of f{x, the objective func-

-2

tion of the SOC RMV beamforming problem in (16) can be rewritten as HUV’VH .
~ 2 ~

As minimizing HU W H is the same as minimizing HU\?VH, by introducing an aux-

iliary variable e, (16) is cast into a standard SOCP problem of order linearly

dependent on N:

min(e) subject to
(45)

Tmin v ~
H2W

min

Uw

‘ < rpinHiW — 1 .

When robust interference rejection is needed, the constraints in (42) and (44)
can be appended to the constraint list in (45) as:

;max lewH < _rmalelw + \[

min

:\max Hl2WH < rmalelw + \[

min

;‘:::JIQWH < _Tmalelw + \5}

f\maleZWH < Tmalelw + \[

min

forl=1,2,---, L. SOCP solvers utilizing interior-point algorithms, e.g., [25,26],
can then be used to solve for the weights of this SOC RMV beamformer. The
complexity of each iteration step is O(N?), and because the number of iter-
ations is typically around ten, the complexity of this SOCP solver approach
is still O(N?). Another way of solving (45), possibly with (46), is by the La-
grange multiplier method [4,6] whose complexity is also O(N?). However, for
each low-rank update of Ry, the latter approach allows update of the weight
design problem with a complexity of only O(N?), while the former approach
requires recomputation every time [6].
Three additional comments are in order:

1. The final SOCP problem of the proposed beamformer is of the same order as
other robust schemes in [3-7] using other uncertainty bounding geometries.



However, in the SOCP problem setup, finding the hypersphere, flat ellipsoid,
or the SOC (centroid approach) that enclose the uncertainty set all require
O(N) work. Tn contrast, finding the tightest SOC (optimal approach) and
the minimum volume ellipsoid [4], provided SOCP and SDP solvers are used
respectively, would require O(pN?) and O(pN*) work in every iteration (e.g.,
[22]), where p is proportional to the number of vertices in the uncertainty set.
Consequently, the first three schemes are more practical when computational
speed is of concern or array size is large.

2. Tf irregular, arbitrary-shape (but convex) polytopes are used to model the
uncertainty set, the maximum Ay, can be obtained in the following way:
First, find the minimum enclosing sphere (MES) of all points ¥/ ||¥]| (¥ € Q'
or fl;) on the unit sphere, which can again be cast as a standard SOCP
problem:

min(radius) subject to (47)
[|point,; — center|| < radius, Vpoint, ,

or solved using other techniques such as the Welzl’s algorithm [30] in lin-
ear time. Then € is simply the unit vector pointing towards the center of
this MES, while Auin, Tmin, and rmax are immediately inferred from the in-
tersection of this MES and the unit sphere. The major difficulty with this
approach, however, is the poor scalability due to the exponential increase in
the number of hull vertices.

3. The proposed SOC RMV beamforming approach does not require the an-
tenna array to be linear as no special restrictions are placed on the steering
vectors. RMV beamforming for general non-uniform arrays with different
element patterns still proceed in the same way. The proposed SOC bound-
ing scheme also provides a deterministic and systematic way to construct
the optimization constraints given the tolerance in AOA and array ampli-
fiers. Due to the SOCP formulation of the beamforming problem, additional
requirements like power restriction on the antenna weights and beampat-
tern tuning [9] are readily incorporated. Furthermore, simple and tight un-
certainty modeling with the centroid approach enables real-time setup and
computation in adaptive arrays.

4 Numerical Examples

The first example studies a 5-element uniform array separated by half wave-
lengths. We start with a simple case of no interfering signal. Suppose a far-field
narrowband signal of unit-power is impinging on the array. The signal AOA is
+20° with an uncertainty of £2.5°. The SNR is 10dB and the noise is white
Gaussian and uncorrelated with the signal. The array amplifiers are of unity gain
with an uncertainty of £0.05 and a phase uncertainty of £3°. The traditional
non-robust Capon MV [1], and the robust hypersphere [3], full (nondegenerate)
ellipsoid [4], flat (degenerate) ellipsoid [6], as well as the proposed beamformers



are designed accordingly. The hyperspherical and the full ellipsoidal uncertainty
bounding schemes are designed such that the annulus sector (Fig. 2) of each
steering vector component is bounded within the uncertainty set. The hyper-
sphere radius thus calculated is 0.8287. The flat ellipsoidal bounding is designed
in a way as in [6], in which a “rank-two” flat ellipsoid is formed such that the
steering vectors at the two uncertain AOA extremes are within the ellipsoid.
Note that a flat ellipsoid assumes certain linear combinations of uncertainty [4]
and may not include all steering vector combinations as in other robust schemes.
In the proposed SOC RMV scheme, the optimal and the centroid methods give
almost the same SOC, parameterized by Amin = 2.3783 and rmin = 1.9922 for
the centroid approach, and Anin = 2.4345 and rmin = 1.9822 for the optimal
approach. Fig. 5 shows the performance of various beamformers against AOA
mismatch. As expected, the proposed SOC RMV beamformers corresponding
to the centroid and optimal methods perform virtually the same, and thus only
the one from centroid method is shown. The results are based on the theoretical
covariance matrix, i.e., M — oo in (7), e.g., see [6]. Fig. 5(a) shows that the pro-
posed and the hypersphere schemes give the best SINR robustness, with their
peak SINRs being comparable to the peak value of the Capon MV beamformer.
The full and flat ellipsoid schemes have lower SINR performance but it improves
when the mismatch is near the extremes. Not surprisingly, the Capon MV beam-
former suffers from an abrupt decrease in SINR when the actual AOA deviates
from the nominal one. Fig. 5(b) shows that the flat ellipsoidal bounding method
produces the tightest results (gain > 1) with respect to the specified range of
uncertainty, while the hypersphere bounding method results in an “over-design”
due to its inherently conservative nature. The proposed and the full ellipsoid
schemes are much tighter compared to the hypersphere scheme. Fig. 5(c) inves-
tigates the accuracy of the signal power estimation, with the estimate from (18)
being used for the Capon MV beamformer, and (19) being employed for the
other schemes. Consistent with the results in [6], the flat ellipsoid scheme pro-
duces the most accurate estimate (0dB) over the uncertainty range, while the
proposed beamformer performs similarly to the hypersphere scheme. A major
drawback of the hypersphere method is the increased power metric, proportional
to |[w||® (see (21)) as illustrated in Fig. 5(d), that may cause the design to be
practically infeasible. Tn contrast, the proposed beamformer shows a value close
to the optimal value of the Capon MV beamformer. The performance of other
robust schemes are in between. Next, we consider the convergence rate of signal
power estimation when the sample covariance matrix is used. The results are
plotted against the number of snapshots (M in (7)) in Fig. 6. Under this case
of no interference, the convergence rates of all robust schemes are basically the
same. Fig. 6(a) shows the power estimation in the absence of AOA mismatch,
while Fig. 6(b) demonstrates how AOA mismatch can deteriorate the estimation
accuracy of the Capon MV beamformer.

The second example considers a 10-element uniform array separated by half
wavelengths. The unit-power signal has an AOA of +10°+2.5°. Four interference
signals of power 6 dB lower than the signal power are coming from —70°, —30°,
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Fig. 5. (a)-(d). Performance of a 5-element array against AOA mismatch: Capon MV
(CAP), hypersphere (SPH), full ellipsoid (ELP), flat ellipsoid (FELP), and the pro-
posed (SOC) beamformers. The two vertical solid lines in each plot denote the AOA
uncertainty range

+50°, and +70°. The noise and amplifier tolerance are the same as in the previous
example. The proposed beamformer designed with the centroid and optimal
approaches are again similar (Aymin = 0.6054 and rmin = 2.2699 for the centroid
approach, and Amin = 0.6271 and 7, = 2.1519 for the optimal approach) and
only the results from the centroid approach are shown. The hypersphere radius
in this case is 2.3847. The full ellipsoidal bounding scheme is not implemented
due to its high computational complexity. Fig. 7 shows similar observations for
various schemes as in Fig. 5. However, in Fig. 7(c), it can be seen that the power
estimation accuracy of the flat ellipsoid scheme is strongly dependent on the
actual AOA mismatch. As shown in Fig. 7(d), the variation in the power metric
of different schemes is much larger due to the increased number of antennae.
It can be seen that the proposed scheme maintains a near-optimal value over
the whole uncertainty range. Fig. 8 further reveals that in terms of signal power
estimation, the proposed scheme enjoys the fastest convergence among others.
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Fig. 6. Signal power estimation for a 5-element array using sample covariance matrix:
(a) no AOA mismatch. (b) 2.5° AOA mismatch. Each data point is the average of 100
Monte Carlo simulations. Featured designs: Capon MV (CAP), hypersphere (SPH),
full ellipsoid (ELP), flat ellipsoid (FELP), and the proposed (SOC) beamformers

In fact, our numerical experiments show that the proposed scheme consistently
gives the fastest convergence.

Next, consider a case with a unit-power signal of AOA +10° £ 1.2°. There
are two unit-power interference signals from —30° £ (0.1° and +50° & 0.1°. The
noise assumption is as before and the amplifier gain and phase uncertainties are
£0.05 and +0.1° respectively. To address the issues of amplifier and interference
uncertainties, we carry out robust interference rejection as discussed in Sect. 2.3.
It is required that the signal gain be at least 20 dB higher than that of the inter-
fering signals (i.e., &1, & < 0.1). Fig. 9 shows 1000 random beampatterns for the
Capon MV and the proposed SOC RMV beamformers (centroid approach) in
which the signal AOA, interfering signal angles, and amplifier gains and phases
vary randomly within their specified uncertainty ranges. The Capon MV beam-
former is designed with the point nulling constraints embedded in (12), and
the proposed beamformer is designed by incorporating (46) into (45). It can be
seen that the worst-case performance of the Capon MV beamformer is severely
degraded: the overall gain is significantly higher, admitting more noise and in-
terference power to degrade the SINR and accuracy of signal power estimation.
In contrast, the proposed scheme performs favorably against uncertainties and
the beampatterns remain almost invariant. It should be noted that under these
design criteria, modeling steering vector uncertainties of the desired and inter-
fering signals using hyperspheres has rendered the SOCP problem infeasible.
Table 1 gives the figures of merits for various schemes under the signal, inter-
ference, and implementation uncertainties. Specifically, the antenna weights are
designed with a covariance matrix arising from a random set of data in the
uncertainty set, and then the performance of the array is measured subject to
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Fig. 7. Performance of a 10-element array against AOA mismatch: Capon MV (CAP),
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another random set of data from the uncertainty set. The results are averaged
over 1000 Monte Carlo simulations. It is seen that the flat ellipsoid scheme, with
its simplified uncertainty structure assumption, is most susceptible to amplifier
parameter variations. While the proposed scheme with robust interference rejec-
tion delivers the highest SINR, most accurate power estimation, and low power
metric. Finally, given the fact that SOC RMV beamformers resulting from the
optimal method and the centroid method perform almost identically, the use of
the centroid approximation in all practical cases is well justified.

5 Conclusion

This paper has presented an efficient geometrical approach for designing RMV
beamformers utilizing SOC uncertainty bounding. The algorithm exploits the
convexity of the optimization constraints and reduces the dimension of the op-
timization process from a convex hull (covering the uncertainty set) to the cir-
cumference of a hyperellipse outside the hull. Extension of this idea to robust
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Table 1. Figures of merits for different schemes under signal, interference, and im-
plementation uncertainties. 1000 Monte Carlo simulations are averaged for each entry
(RIR stands for robust interference rejection)

Power(W)|SINR(dB)|Power Estimate(dB)
Capon 1.9840 6.0621 -2.9282
Hypersphere 0.2597 18.9755 0.0768
Flat Ellipsoid 0.6754 11.7388 -0.2191
Proposed(centroid, no RIR) 0.1249 16.7159 0.1421
Proposed(optimal, no RIR) 0.1261 16.5128 0.1458
Proposed(centroid with RIR)| 0.1380 19.8219 0.0515

interference rejection has been illustrated. Its application has been demonstrated
through a generic example of modeling array uncertainties using complex-plane
trapezoids. The beamforming task has been transformed into an SOCP problem
that can be efficiently solved using either interior point algorithms or the La-
grange multiplier method. Simplification of the proposed scheme using a centroid
heuristics and its extension to arbitrary uncertainty geometries have also been
discussed. Numerical examples have confirmed that the proposed SOC RMV
beamformer exhibits high computational efficiency, better tightness, power re-
quirement, and convergence in signal power estimation over other schemes.
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