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ABSTRACT 

In most, if not all, of the previous work on finite element formulation and nonlinear solution 

procedures, results of geometric nonlinear benchmark problems of shells are presented in the form 

of load-deflection curves. In this paper, eight sets of popularly employed benchmark problems are 

identified and their detailed reference solutions are obtained and tabulated. It is hoped that these 

solutions will form a convenient basis for subsequent comparison and that the tedious yet inaccurate 

task of reconstructing data points by graphical measurement of previously reported load-deflection 

curves can be avoided. Moreover, the relative convergent difficulty of the problems are revealed by 

the number of load increments and the total number of iterations required by an automatic load 

incrementation scheme for attaining the converged solutions under the maximum loads.   
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1.  INTRODUCTION 

To examine or demonstrate the accuracy of new finite element models or the effectiveness of new 

nonlinear solution procedures, popular benchmark problems are often exercised and the predictions 

are compared to some reference solutions. Since analytical solutions of shell problems are very 

limited, most of reference solutions are previously reported numerical solutions. For linear 

benchmark problems, these solutions can be conveniently and concisely expressed in terms of 

numerical figures. To this end, the problem sets stipulated by MacNeal & Harder [1] and Hitchings, 

Kamoulakos & Davies [2] include some of the most widely attempted tests. Reference [1] has been 

well-received in the academic community. Reference [2] is a publication of UK’s National Agency 

for Finite Element Methods and Standards (NAFEMS) and is mainly adopted by software 

developers for quality assurance. Noticeably, there are a number of cases common to both problem 

sets.  

For geometric nonlinear analysis of shells, the most recent and relevant NAFEMS publication is 

probably the one by Prinja & Clegg [3]. Besides reference [3], more than forty research papers [4-

49] on geometric nonlinear finite element formulation have also been surveyed. For conciseness, 

the reported predictions are mostly presented in the form of load-deflection curves. Occasionally, 

the results are reported numerically at a few selected load levels. In order to compare the 

predictions of new finite element models or procedures with their precedents, reconstructing the 

previously reported load-deflection curves by extracting data points using graphical measurement is 

the obvious and, perhaps, the only choice. The practice is not only inaccurate but also time 

consuming. In this context, eight sets of popular benchmark problems for geometric nonlinear 

analysis of shell are selected from those considered in references [3-49]. They are attempted by 

using ABAQUS’s S4R four-node shell element models [50]. This paper will provide sufficient data 

points in numerical format so that the relevant load-deflection curves can be accurately and 

efficiently reconstructed. To reveal the relative convergent difficulty of the problems, the number of 

load increments and the total number of iterations required by ABAQUS’s default automatic load 

incrementation scheme for attaining the converged solutions under the maximum loads are reported.  

 

 

2.  LOAD INCREMENTATION SCHEME 

In the nonlinear solution procedure, the full Newton-Raphson method is used. The default 

convergence criteria are always employed and they are the simultaneous 0.5% force tolerance and 

1% displacement tolerance. The default automatic load incrementation scheme in ABAQUS is 

adopted and the procedure is portrayed in Figure 1. Throughout the scheme, the maximum load Pmax 



will be automatically subdivided into NINC load increments which are not necessarily uniform. At 

the end of each load increment, a converged intermediate solution is obtained. This reduces the 

degree of nonlinearity from an intermediate solution state to another and enhances the chance of 

obtaining the ultimate solution. The latter is the one under the maximum load Pmax. The scheme 

starts with the load increment ∆P set to the maximum load Pmax. If the solution cannot converge 

within 16 iterations (counted by m) or if the solution diverges, the scheme abandons the increment 

and starts again with the load increment reduced to one-quarter of the previous value. If the solution 

still fails to converge, the scheme further reduces the increment size again. If the solution fails after 

5 attempts (counted by n) of load increment reduction, the analysis will be stopped or aborted. On 

the other hand, it automatically increases the load increment by 50% if the last two converged 

solutions are both obtained within 5 iterations. If the scheme is not aborted, ABAQUS outputs 

NINC and NITER. The latter is the total number of iterations required to obtained the NINC 

converged intermediate solutions. In this paper, both NINC and NITER are reported to reveal the 

relative convergent difficulty of the considered problems.  

 For the sake of benchmarking, intermediate solutions given at uniform load intervals are desired. 

However, these solutions cannot be yielded by the afore-discussed default automatic load 

incrementation scheme. To this end, the solutions to be reported are computed by dividing the 

maximum load into a number of equal load increments NINC*, where further subdivision of the 

load increment is suppressed. In order that the ultimate solution can be successfully obtained, 

NINC* is often much larger than the NINC required by the default automatic load incrementation 

scheme.  

 

 

3.  BENCHMARK TESTS 

In this section, eight sets of popularly employed geometric nonlinear benchmark problems on 

beams, plates, cylindrical shells and spherical shell are selected. A small portion of the considered 

structures are laminated. In the subsequent description, the following nomenclature is employed: 

ν:  Poisson’s ratio 
b:  width 
E:  elastic modulus 
G: shear modulus 
h: thickness of beam, plate or shell 
I:  second moment of area 
L: length or longitudinal length 
M, Mmax : applied moment and maximum applied moment, respectively 
NINC:  the total number of load increments that yield the ultimate solution (determined by 

the default load incrementation scheme), 



NINC*: the number of equal load increments used to obtain the plotted and tabulated data 
NITER:  the total number of iterations that lead to the NINC convergent solutions 
P, Pmax : applied force and maximum applied force, respectively 
R: mean radius 
U, V and W: displacements along the Cartesian coordinates X, Y and Z, respectively. 

 

All benchmark problems to be presented have been attempted by ABAQUS’s S4R, S4R5 and 

S9R5 curved shell element models. All of them are Reduced-integrated elements with hourglass 

control and their features are summarized in Table 1. In particular, the formulation of S4R changes 

when the shell thickness increases from that of the discrete Kirchhoff shell to that of the thick shell. 

On the other hand, both S4R5 and S9R5 are only recommended for thin shell analysis [50]. In 

nearly all problems, the deformed structures will be portrayed and the displacement amplification 

factor is always taken to be unity.  

 

Table 1.  Features of S4R, S4R5 and S9R5 curved shell element models.  
 S4R S4R5 S9R5 
No. of nodes per element 4 4 9 
No. of  d.o.f.s per node 6 5 5 
Hourglass treatment default stabilization default stabilization default stabilization
Drilling rotation treatment default stabilization not applicable not applicable 
Lagrangian framework updated total total 
Applicable strain finite/large small small 
Intended thickness thin and thick thin only thin only 
 

When the default automatic load incrementation scheme is adopted, the solution procedures of 

S4R5 are aborted before the load reaches its maximum in many benchmark problems. The situation 

of S9R5 is even worse. When equal load increments are imposed, S4R5 and S9R5 require 

considerably larger number of load increments than that of S4R for securing the ultimate solution. 

In this light, only the predictions of S4R and the related NINC and NITER output at the end of the 

automatic load incrementation scheme will be reported.  

To ensure that the reported solutions have been sufficiently converged with respect to the mesh 

density, the mesh is refined until the solutions yielded by two successively refined meshes are 

practically identical. To illustrate that the mesh density is adequate, results predicted by two 

different meshes will be shown in all load-deflection curves. The two sets of results are graphically 

indistinguishable and the discrepancy is typically around 0.1%. The precise relations between the 

applied loads and the selected deflections in numerical format are mostly reported at a load interval 

given as 5% of the maximum load. If deemed to be necessary, additional data points are employed 

to enhance the quality of the so-constructed load-deflection curves. Lastly, all problems are 

geometric nonlinear in the narrow sense and material nonlinearity is not considered. 



 

3.1  Cantilever subjected to End Shear Force 

Figure 2a shows a cantilever subjected to the end shear force P. The problem has been 

considered in references [5,8,19,21,29,32,35,36,45,47,48], among others. A commonly employed 

mesh for four-node shell elements is 8×1 which is also adequate for the S4R element. Figure 2b 

plots the end shear force against the vertical and horizontal tip deflections. Table 2a lists the same 

deflections whereas Table 2b lists the NINC and NITER. Figure 2c portrays the deformed 

cantilever under the maximum load.  

 

Table 2a.   Horizontal and vertical tip deflections for the cantilever loaded with end shear force 
(computed by using 16×1 S4R elements and NINC* = 40), see Figure 2a.  

P/Pmax -Utip Wtip P/Po -Utip Wtip P/Po -Utip Wtip
0.05 0.026 0.663 0.40 1.184 4.292 0.75 2.541 6.031 
0.10 0.103 1.309 0.45 1.396 4.631 0.80 2.705 6.190 
0.15 0.224 1.922 0.50 1.604 4.933 0.85 2.861 6.335 
0.20 0.381 2.493 0.55 1.807 5.202 0.90 3.010 6.467 
0.25 0.563 3.015 0.60 2.002 5.444 0.95 3.151 6.588 
0.30 0.763 3.488 0.65 2.190 5.660 1.00 3.286 6.698 
0.35 0.971 3.912 0.70 2.370 5.855    

 

Table 2b. NINCs and NITERs required to obtained the ultimate solution for the cantilever loaded  
with end shear force, see Figure 2a.  

 8×1 S4R elements 16×1 S4R elements 
NINC 15 15 
NITER 78 80 

 

3.2  Cantilever subjected to End Moment 

Figure 3a shows a cantilever subjected to end moment M. A commonly employed mesh for four-

node shell elements is 12×1. The problem has been considered in references [5,10,13,17,18,21,29, 

30,32,34,36,40,46], among others. The cantilever forms a circular arc with its radius R given by the 

classical flexural formula R = EI/M. Using the formula, the analytical normalized deflections can be 

derived to be  

 

sin 1o

o

MU M
L M M
= −   ,  (1 cos )o

o

MW M
L M M
= −  

 
where Mo = EI/L. The maximum end moment Mmax is taken to be πMo at which the beam will be 

bent into a circle. In this problem, accurate predictions can be yielded by 8×1 S4R elements. Figure 

3b plots the end moment against the vertical and horizontal tip deflections. Figure 3c portrays the 



deformed cantilevers at M = 0.35Mmax, 0.7Mmax and Mmax. Table 3a lists the analytical and 

computed tip deflections, which are highly consistent with each other. Table 3b lists the NINC and 

NITER. Compared to the last cantilever problem, the present one converges less readily.  

 
Table 3a.   Horizontal and vertical tip deflections for the cantilever loaded with end bending  

moment (computed by using 16×1 S4R elements and NINC* = 80), see Figure 3a.  
-Utip Wtip -Utip WtipM/Mmax S4R exact S4R exact M/Mmax S4R exact S4R exact 

0.05 0.196 0.196 1.870 1.870 0.55 13.075 13.073 6.788 6.775 
0.10 0.773 0.774 3.648 3.648 0.60 13.875 13.871 5.772 5.758 
0.15 1.698 1.699 5.249 5.248 0.65 14.384 14.377 4.678 4.665 
0.20 2.916 2.918 6.600 6.598 0.70 14.603 14.595 3.583 3.571 
0.25 4.357 4.361 7.643 7.639 0.75 14.556 14.546 2.556 2.546 
0.30 5.942 5.945 8.338 8.333 0.80 14.280 14.270 1.656 1.650 
0.35 7.582 7.585 8.671 8.664 0.85 13.826 13.818 0.931 0.926 
0.40 9.191 9.194 8.646 8.637 0.90 13.254 13.247 0.407 0.405 
0.45 10.687 10.688 8.291 8.281 0.95 12.625 12.621 0.099 0.098 
0.50 12.000 12.000 7.652 7.639 1.00 12.000 12.000 0.000 0.000 

 
Table 3b. NINCs and NITERs required to obtain the ultimate solution for the cantilever loaded  

with end bending moment, see Figure 3a. 
 8×1 S4R elements 16×1 S4R elements 

NINC 125 125 
NITER 715 714 

 

3.3  Slit Annular Plate subjected to Lifting Line Force 

The slit annular plate is shown in Figure 4a. The problem has been considered in references 

[23,25,27,33,36,39,40,44,46,48,49], among others. The line force P is applied at one end of the slit 

while the other end of the slit is fully clamped. A commonly employed mesh for four-node shell 

elements is 6×30 which is also adequate for the S4R element. Figure 4b plots the load against the 

vertical deflections at the tips of the slit A and B. Table 4a lists the deflections whereas Table 4b 

lists the NINC and NITER. Figure 4c shows the deformed slit plate under the maximum load.  

 
Table 4a.   Vertical deflections at points A and B of the slit annular plate lifted by a line 

force (10×80 S4R elements and NINC* = 640), see Figure 4a. 
P/Pmax WA WB P/Pmax WA WB P/Pmax WA WB
0.025 1.305 1.789 0.30 8.340 11.213 0.70 11.970 15.469 
0.05 2.455 3.370 0.35 8.974 11.992 0.75 12.310 15.842 
0.075 3.435 4.720 0.40 9.529 12.661 0.80 12.642 16.202 
0.10 4.277 5.876 0.45 10.023 13.247 0.85 12.966 16.550 
0.125 5.007 6.872 0.50 10.468 13.768 0.90 13.282 16.886 
0.15 5.649 7.736 0.55 10.876 14.240 0.95 13.590 17.212 
0.20 6.725 9.160 0.60 11.257 14.674 1.00 13.891 17.528 
0.25 7.602 10.288 0.65 11.620 15.081    



Table 4b. NINCs and NITERs required to obtain the ultimate solution for slit annular plate lifted  
by line force, see Figure 4a. 

 6×30 S4R elements 10×80 S4R elements 
NINC 61 67 
NITER 327 346 

 

3.4  Hemispherical Shell subjected to Alternating Radial Forces 

Figure 5a shows hemispherical shell with an 18o circular cutout at its pole. The shell is loaded by 

alternating radial point forces Ps at 90o intervals. The problem has been considered in references 

[18,19,21,23,25,26,28,31,32,34,35,37,40,41,44-49], among others. Owing to symmetry, one quarter 

of the shell is modeled and a commonly employed mesh for four-node shell elements is 16×16. 

Figure 5b plots the load against the radial deflections at the points of loading A and B. Table 5a 

lists the same deflections whereas Table 5b lists the NINC and NITER. Figure 5a also shows the 

deformed hemispherical shell under the maximum load. In this problem, reasonably accurate 

predictions can be yielded by using 12×12 S4R elements. 

 
Table 5a.   Radial deflections at points A and B of the hemispherical shell problem (computed  

by 16×16 S4R elements and NINC* = 40), see Figure 5a.  
P/Pmax VA -UB P/Pmax VA -UB P/Pmax VA -UB
0.05 0.855 0.955 0.40 3.158 5.196 0.75 3.816 7.234 
0.10 1.499 1.840 0.45 3.291 5.565 0.80 3.875 7.448 
0.15 1.969 2.604 0.50 3.406 5.902 0.85 3.929 7.647 
0.20 2.321 3.261 0.55 3.508 6.212 0.90 3.979 7.835 
0.25 2.596 3.833 0.60 3.598 6.497 0.95 4.025 8.011 
0.30 2.819 4.339 0.65 3.678 6.761 1.00 4.067 8.178 
0.35 3.002 4.790 0.70 3.750 7.006    

 

Table 5b. NINCs and NITERs required to obtain the ultimate solution for the hemisphere shell  
problem, see Figure 5a. 

 12×12 S4R elements 16×16 S4R elements 
NINC 27 27 
NITER 140 136 

 

3.5  Pullout of an Open-Ended Cylindrical Shell 

Figure 6a shows an open-ended cylinder being pulled by a pair of radial forces Ps. The problem 

has been considered in references [14,24,26,28,32,33,40,44,46,48,49], among others. Owing to 

symmetry, one-eighth of the shell is modeled and a commonly employed mesh for four-node shell 

elements is 8×12. Figure 6b plots the load against the radial deflections at points A, B and C. Table 

6a lists the data points whereas Table 6b lists the NINC and NITER. The deformed geometry under 

the maximum load is portrayed in Figure 6c. In this problem, reasonably accurate predictions can 



be yielded by 16×24 S4R elements. 

 
Table 6a.   Radial deflections at points A, B and C of the open-ended cylindrical shell (computed  
    by using 24×36 S4R elements and NINC* = 400), see Figure 6a. 

P/Pmax WA -UB -UC P/Pmax WA -UB -UC P/Pmax WA -UB -UC
0.025 0.819 0.864 0.872 0.35 2.321 3.342 3.556 0.70 2.672 4.385 3.378
0.05 1.260 1.471 1.493 0.40 2.376 3.443 3.632 0.75 2.692 4.423 3.353
0.075 1.527 1.901 1.946 0.45 2.425 3.539 3.688 0.80 2.710 4.455 3.332
0.10 1.707 2.217 2.293 0.50 2.473 3.653 3.718 0.85 2.726 4.483 3.313
0.15 1.936 2.641 2.792 0.525 2.543 4.061 3.580 0.90 2.741 4.508 3.297
0.20 2.079 2.904 3.106 0.55 2.577 4.171 3.518 0.95 2.755 4.530 3.283
0.25 2.180 3.087 3.310 0.60 2.618 4.274 3.452 1.00 2.768 4.551 3.269
0.30 2.257 3.227 3.452 0.65 2.648 4.338 3.410     

 

Table 6b. NINCs and NITERs required to obtain the ultimate solution for the open-ended  
cylindrical shell, see Figure 6a.   

 16×24 S4R elements 24×36 S4R elements 
NINC 18 18 
NITER 91 94 

 

3.6  Pinched Cylindrical Shell mounted over Rigid Diaphragms 

 Figure 7a shows a pinched cylindrical shell mounted on rigid end diaphragms over which the 

in-plane displacements U and W are restrained. The problem and its variations have been 

considered in references [21,26,37,43-45,48], among others. Owing to symmetry, one-eighth of the 

shell is modeled and a commonly employed mesh for four-node shell elements is 40×40 which is 

also adequate for the S4R element. Figure 7b plots the load against radial deflections at points A 

and B. Table 7a lists the same deflections whereas Table 7b lists the NINC and NITER. The 

deformed geometry under the maximum load is portrayed in Figure 7c.  

 

Table 7a.   Radial deflections at points A and B of the pinched cylindrical shell (computed by 
 48×48 S4R elements and NINC* =1280), see Figure 7a.  

P/Pmax -WA UB P/Pmax -WA UB P/Pmax -WA UB
0.05 9.561 -0.233 0.30 65.498 17.979 0.70 78.451 29.772 
0.075 15.648 -0.922 0.35 68.229 20.365 0.75 79.339 30.604 
0.10 23.164 -2.391 0.40 70.424 22.321 0.80 80.218 31.471 
0.125 29.375 -3.872 0.45 72.204 23.916 0.85 81.045 32.299 
0.15 36.208 -2.154 0.50 73.790 25.381 0.90 81.766 32.989 
0.175 51.499 6.792 0.55 75.139 26.631 0.95 82.435 33.619 
0.20 56.373 10.448 0.60 76.331 27.735 1.00 83.102 34.272 
0.25 61.877 14.905 0.65 77.472 28.843    

 



Table 7b. NINCs and NITERs required to obtain the ultimate solution for the pinched cylindrical  
shell, see Figure 7a.   

 40×40 S4R elements 48×48 S4R elements 
NINC 69 70 
NITER 391 406 

 

3.7  Pinched Semi-Cylindrical Isotropic and Laminated Shells 

 Figure 8a shows the semi-cylindrical shell subjected to an end pinching force at the middle of 

the free-hanging circumferential periphery. The other circumferential periphery is fully clamped. 

Along its longitudinal edges, the vertical deflection and the rotation about the Y-axes are restrained. 

Besides the isotropic material, laminates with stacking sequences [00/900/00] and [900/00/900] are 

also considered. In the laminates, all plies are equal in thickness. A ply is of 00 if its fibres are 

parallel to the longitudinal direction of the shell. The present problems have been considered in 

references [16,22,33,40,42,47,48], among others. Owing to symmetry, half of shell is modeled and 

a commonly employed mesh for four-node shell elements is 16×16. Figure 8b plots the applied 

force against the downward deflections at A. Table 8a lists the same deflections whereas Table 8b 

lists the NINC and NITER. The deformed shells under the maximum load are portrayed in Figures 

8c and 8d. In this problem, reasonably accurate predictions can be yielded by 32×32 S4R elements. 

 

Table 8a.   The downward deflection at A of the pinched semi-cylindrical shells (computed by 
using 40×40 S4R elements and NINC* = 320), see Figure 8a.  

P/Pmax isotropic [00/900/00] [900/00/900] P/Pmax isotropic [00/900/00] [900/00/900]
0.05 5.421 15.340 7.558 0.45 124.751 177.404 132.488 
0.10 16.100 37.920 22.722 0.50 132.653 180.680 138.740 
0.125 22.195 55.145 30.594 0.55 138.920 183.544 144.238 
0.15 27.657 93.433 37.897 0.60 144.185 186.099 149.191 
0.175 32.700 129.575 45.427 0.65 148.770 188.415 153.728 
0.20 37.582 141.562 54.455 0.70 152.863 190.543 157.930 
0.225 42.633 149.034 65.814 0.75 156.584 192.520 161.854 
0.25 48.537 154.634 79.512 0.80 160.015 194.376 165.540 
0.275 56.355 159.141 92.524 0.85 163.211 196.132 169.017 
0.30 66.410 162.896 102.357 0.90 166.200 197.808 172.308 
0.325 79.810 166.099 109.793 0.95 168.973 199.420 175.430 
0.35 94.669 168.884 115.746 1.00 171.505 200.983 178.386 
0.40 113.704 173.560 125.094     

 

Table 8b.  NINCs and NITERs required to obtain the ultimate solution for the pinched semi- 
cylindrical, see Figure 8a.   

32×32 S4R elements 40×40 S4R elements  
isotropic [00/900/00] [900/00/900] isotropic [00/900/00] [900/00/900]

NINC 28 36 32 28 36 33 
NITER 136 171 184 136 170 184 

 



 

3.8  Hinged Cylindrical Isotropic and Laminated Roofs 

 Figure 9a shows the hinged semi-cylindrical roof subjected to a central pinching force. An 

isotropic material, [00/900/00] laminate and [900/00/900] laminate at two different thicknesses are 

considered. Again, a ply is of 00 if its fibres are parallel to the longitudinal direction of the shell. All 

plies in the same laminate are equal in thickness. Along the hinged edges, all nodal translations are 

restrained. These problems have been considered in references [4-12,15,17,18,20,21,24,26,28-

30,33,36,38,43,47,48], among others, and are particularly popular due to the snapping behavior. At 

some intermediate state, the tangential global stiffness matrices become singular. The problems are 

often, if not always, solved by Riks solution method and such an option in ABAQUS is adopted. 

Owing to symmetry, one quarter of the roof is modeled and a commonly employed mesh for four-

node shell elements is 4×4. For the 12.7 unit thick shells, reasonably accurate predictions can be 

yielded by using 8×8 S4R elements as shown in Figure 9b. For the 6.35 unit thick shells, the same 

mesh is inadequate. However, reasonably accurate predictions can be obtained by using 16×16 S4R 

elements as shown in Figure 9c. Tables 9a to 9f list the data points. With the Riks solution method, 

it is not possible to yield a solution at a preset load level. This explains why the load levels in the 

tables are different whereas the load-deflections curves produced by the coarser meshes do not 

reach the last solution points yielded by the finer meshes in Figures 9b and 9c. Despite the high 

nonlinearity, the maximum deflections are much smaller than the overall dimensions of the roof. 

Unlike the previous problems, the deformed meshes are not shown as they can hardly be 

distinguished from the undeformed ones. As the default automatic load incrementation scheme does 

not work for the present problems, there are no NINC and NITER.  

 

Table 9a. Deflections for the 12.7 unit thick isotropic hinged cylindrical shell (computed by using 
16×16 S4R elements and Riks method), see Figure 9a. 

P/Pmax -WC P/Pmax -WC P/Pmax -WC P/Pmax -WC
0.0877 0.693 0.7421 11.293 0.3245 16.590 0.3871 24.049 
0.1980 1.638 0.7286 12.141 0.2717 17.094 0.4443 24.663 
0.3473 3.087 0.7023 12.903 0.2272 17.657 0.5093 25.293 
0.4686 4.477 0.6649 13.583 0.1940 18.299 0.5826 25.940 
0.5647 5.802 0.6182 14.188 0.1750 19.028 0.6644 26.601 
0.6381 7.057 0.5643 14.728 0.1729 19.852 0.7551 27.276 
0.6908 8.237 0.5055 15.217 0.1905 20.771 0.8549 27.964 
0.7246 9.339 0.4442 15.676 0.2303 21.780 0.9643 28.663 
0.7412 10.358 0.3830 16.125 0.2950 22.875 1.0835 29.374 

 



Table 9b. Deflections for the 12.7 unit thick [00/900/00] hinged cylindrical shell (computed by  
using 16×16 S4R elements and Riks method), see Figure 9a. 

P/Pmax -WC P/Pmax -WC P/Pmax -WC P/Pmax -WC
0.0546 0.807 0.3577 10.735 0.0638 16.199 0.0194 22.707 
0.1245 1.956 0.3464 11.516 0.0303 16.648 0.0697 23.824 
0.1938 3.281 0.3288 12.227 0.0007 17.141 0.1354 25.005 
0.2494 4.548 0.3057 12.872 -0.0236 17.692 0.2178 26.244 
0.2925 5.753 0.2778 13.458 -0.0411 18.317 0.3181 27.533 
0.3244 6.892 0.2461 13.990 -0.0504 19.024 0.4374 28.864 
0.3459 7.961 0.2115 14.477 -0.0503 19.817 0.5769 30.229 
0.3582 8.959 0.1749 14.928 -0.0394 20.698 0.7374 31.622 
0.3618 9.884 0.0999 15.774 -0.0165 21.663 1.0192 33.748 

 
Table 9c. Deflections for the 12.7 unit thick [900/00/900] hinged cylindrical shell (computed by  

using 16×16 S4R elements and Riks method), see Figure 9a. 
P/Pmax -WC P/Pmax -WC P/Pmax -WC P/Pmax -WC
0.0556 0.649 0.5336 9.545 0.5801 16.019 0.2834 20.881 
0.1299 1.581 0.5550 10.404 0.5685 16.545 0.2789 21.318 
0.2090 2.673 0.5716 11.231 0.5542 17.028 0.2812 21.823 
0.2784 3.740 0.5838 12.024 0.5374 17.465 0.3099 23.030 
0.3389 4.781 0.5919 12.782 0.4971 18.206 0.3755 24.476 
0.3914 5.794 0.5963 13.505 0.4498 18.785 0.4832 26.120 
0.4365 6.777 0.5970 14.192 0.3991 19.249 0.6380 27.921 
0.4748 7.731 0.5945 14.841 0.3501 19.682 0.8444 29.844 
0.5070 8.654 0.5888 15.450 0.3090 20.191 1.0356 31.349 

 
Table 9d. Deflections for the 6.35 unit thick isotropic hinged cylindrical shell (computed by using 

24×24 S4R elements and Riks method), see Figure 9a. 
P/Pmax -WC P/Pmax -WC P/Pmax -WC P/Pmax -WC
0.0517 1.846 0.1671 15.501 -0.1001 14.520 -0.0006 24.824 
0.1182 5.271 0.1323 16.145 -0.1142 14.451 0.0626 26.565 
0.1583 8.257 0.0923 16.602 -0.1247 14.862 0.1427 28.302 
0.1837 10.799 0.0504 16.915 -0.1288 15.778 0.2403 30.023 
0.1914 11.904 0.0083 17.008 -0.1271 16.961 0.3559 31.720 
0.1953 12.892 -0.0312 16.697 -0.1196 18.320 0.4898 33.388 
0.1950 13.752 -0.0622 15.780 -0.1055 19.817 0.6417 35.024 
0.1901 14.472 -0.0739 15.206 -0.0825 21.420 0.8114 36.626 
0.1806 15.050 -0.0861 14.767 -0.0484 23.100 1.0313 38.450 

 
Table 9e. Deflections for the 6.35 unit thick [00/900/00] hinged cylindrical shell (computed by  

using 24×24 S4R elements and Riks method), see Figure 9a. 
P/Pmax -WC P/Pmax -WC P/Pmax -WC P/Pmax -WC
0.0423 3.414 -0.0817 15.574 0.0593 11.860 -0.0731 17.712 
0.0765 8.834 -0.0779 12.857 0.0428 10.506 -0.0593 20.694 
0.0782 12.280 -0.0650 10.991 0.0210 10.406 -0.0214 24.230 
0.0564 14.492 -0.0442 10.126 -0.0006 10.745 0.0556 27.809 
0.0271 16.397 -0.0189 10.494 -0.0215 11.263 0.1700 31.174 
-0.0059 18.017 0.0007 11.931 -0.0419 11.861 0.3213 34.362 
-0.0240 18.602 0.0142 13.623 -0.0607 12.555 0.5085 37.394 
-0.0436 18.875 0.0296 14.751 -0.0742 13.602 0.7292 40.274 
-0.0657 18.365 0.0499 14.425 -0.0780 15.332 1.0243 43.444 



 
Table 9f. Deflections for the 6.35 unit thick [900/00/900] hinged cylindrical shell (computed by  

using 24×24 S4R elements and Riks method), see Figure 9a. 
P/Pmax -WC P/Pmax -WC P/Pmax -WC P/Pmax -WC
0.0490 2.699 0.1499 18.140 -0.0117 14.369 -0.0402 22.448 
0.0822 5.205 0.1385 18.954 -0.0168 13.519 0.0036 24.905 
0.1063 7.479 0.1222 19.416 -0.0297 13.456 0.0693 27.427 
0.1249 9.527 0.1019 19.429 -0.0458 13.873 0.1598 29.941 
0.1393 11.374 0.0792 19.167 -0.0619 14.469 0.2761 32.401 
0.1498 13.043 0.0331 18.249 -0.0752 15.258 0.4180 34.786 
0.1562 14.550 0.0134 17.555 -0.0818 16.461 0.5847 37.088 
0.1585 15.905 -0.0011 16.641 -0.0792 18.129 0.7747 39.301 
0.1565 17.107 -0.0088 15.532 -0.0663 20.157 1.0234 41.773 

 
  
 

4.  CLOSURE 

From more than forty publications on geometric nonlinear analysis of shells, eight sets of popularly 

employed benchmark problems are identified and the detailed reference solutions are tabulated. It is 

hoped that the solutions will form a convenient basis for subsequent comparison and that the 

inaccurate and time consuming task of reconstructing data points by graphical measurement of 

previously reported load-deflection curves can be avoided. To reveal the relative convergent 

difficulty, the number of load increments (NINC) and the number iterations (NITER) required by an 

automatic load incrementation scheme to attain the maximum loads are also reported. Care has been 

exercised to ensure that the reported solutions have been highly converged with respect to the mesh 

density. It is interesting to note that once the employed mesh becomes sufficiently fine, the NINC 

and the NITER are not sensitive to further mesh refinement. In view of converging difficulty, the 

most demanding problems are the cantilever subjected to end moment and the hinged cylindrical 

roofs. While the hinged roof problems must be solved by Riks method, NINC and NITER of the 

cantilever problem are significantly higher than that of the remaining benchmark cases. 
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Figure 1. The automatic load incrementation scheme.  



 

 

 

 

E=1.2×106

ν = 0,  L = 10 
b = 1,  h = 0.1 
Po = EI/L2 = 1 
Pmax = 4Po = 4  

 
Figure 2a:  Cantilever subjected to end shear force. 
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Figure 2b:  Load-deflection curves for cantilever subjected to end shear force. 
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Figure 2c:  The deformed 16×1 mesh under the maximum force.  
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Mo = EI/L = 25/3 
Mmax = 2πMo = 50π/3

 
Figure 3a.  Cantilever subjected to end bending moment. 
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Figure 3b:  Load-deflection curves for cantilever subjected to end bending moment. 
 
 
 
 

initia
l mes

h
M

M=0.35Mmax

M=0.7Mmax

M=Mmax  
Figure 3c:  The deformed 16×1 mesh under the maximum bending moment. 
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ν  = 0  
Ri = 6, Ro = 10 
h = 0.03 
Pmax = 0.8 (force/length) 

Figure 4a. The slit annular plate loaded with the line force P. 
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Figure 4b: Load-deflection curves for the slit annular plate lifted by line force P. 
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Figure 4c:  The deformed 10×80 mesh at P=Pmax. 
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E = 6.825×107     
ν = 0.3        
R = 10         
h = 0.04 
Pmax = 400 

Figure 5a.  The initial geometry and deformed geometry at P = Pmax for the hemispherical shell  
subjected to inward and outward radial forces. 
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Figure 5b: Load-deflection curves for the hemisphere shell subjected to radial forces. 
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E = 10.5×106

ν = 0.3125 
R = 4.953 
L = 10.35 
h = 0.094 
Pmax = 40,000 

Figure 6a: The open-end cylindrical shell subjected to radial pulling forces. 
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Figure 6b: Load-deflection curves of the open-end cylinder subjected to pulling forces. 
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Figure 6c:  The deformed 24×36 mesh for the open-ended cylindrical under the maximum load. 
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E = 30×103

ν = 0.3 
R = 100  
L = 200 
h = 1 
Pmax = 12,000 
 
 

Figure 7a:  Pinched cylindrical shell mounted on rigid end diaphragms. 
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Figure 7b: Load-deflection curves of the pinched cylinder mounted over rigid end diaphragms. 
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Figure 7c: The deformed 48×48 mesh of the pinched cylinder under maximum load. 
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Figure 8a. The semi-cylindrical shell subjected to an end pinching force. 
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Figure 8b: Load-deflection curves of the semi-cylindrical shell subjected to end pinching force. 
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Figure 8c. The deformed 40×40 mesh of the semi-cylindrical isotopic shell under maximum load. 
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Figure 8d.  The deformed 40×40 meshes of the semi-cylindrical [00/900/00] and [900/00/900]  
laminated shells under maximum load. 
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Figure 9a: Hinged cylindrical roof subjected to a central pinching force. 
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Figure 9b: Load-deflection curves of the 12.7 unit thick hinged cylindrical roof. 
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Figure 9c: Load-deflection curves of the 6.35 unit thick hinged cylindrical roof. 
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